

PRELIMINARY SITE INVESTIGATION REPORT

PROJECT: 13L Narromine Road Dubbo, NSW and Jannali Road, Dubbo, NSW 2830

- CLIENT: Bathla Group
- DATE: 16 June 2022

REPORT NO: NE1295

REVISION: 0

GEOTESTA PTY LTD ABN 91 851 620 815 Unit 6, 20-22 Foundry Road, Seven Hills, NSW 2147 1300 852 216 info@geotesta.com.au geotesta.com.au

Contents

1.	INTRODUCTION		7		
2.	PLANNING GUIDELINES			8	
3.	OBJ	ECTIVE		9	
4.	SCC	PE OF V	WORKS	10	
5.	SITE	E DESCR	RIPTION	11	
	5.1	Site Ider	ntification	11	
	5.2	Propose	d Development	12	
	5.3	Site Deta	ails, Geology and Topography	13	
	5.4	Site Reg	ional Meteorology and Hydrogeology	14	
	5.5	Registered Bore Search			
	5.6	5			
	5.7	Summai	ry of Site History	15	
		5.7.1	Historical Background	15	
		5.7.2	Aerial Photograph Review	15	
	5.8				
	5.9	NSW OI	EH/EPA Records	17	
	5.10	Planning	g Certificate	17	
	5.11	Historic	al Land Titles	17	
	5.12	Lotsearc	h	17	
	5.13	Salinity	Mapping	18	
6.	CONCEPTUAL SITE MODEL 19				
	6.1	Areas of	Environmental Concern	19	
	6.2	Potential Receptors and Sensitive Environments			
	6.3	Potential for migration and exposure of contamination 20			
	6.4 Assessment of Preliminary Site Investigation and Recommendations20				
7.	SAMPLING AND ANALYSIS QUALITY PLAN (SAQP)				
	7.1	Field Sci	reening and Sampling Program	22	
		7.1.1	Data Quality Plan	22	
		7.1.2	Visual Inspection	22	
		7.1.3	Soil Sampling Techniques	22	
		7.1.4	Rationale for Sampling Program and Locations	22	
		7.1.5	Sampling Program	23	
		7.1.6	Soil Logging	23	
	7.2	Samplin	g Quality control (QC) / Quality Assurance (QA)	23	

PSI REPORT - 13L Narromine Road and Jannali Road, Dubbo, NSW 2830 NE1295					
		7.2.1	Sampling Procedures	23	
		7.2.2	Analytical QA/QC Procedures	24	
8.	SAN	APLINC	G PROGRAM	26	
	8.1	Field In	vestigation	26	
	8.2	Analyti	cal Program	26	
9.	ASS	ESSME	NT CRITERIA	29	
	9.1	Heavy	metals, PAH, PCB, OCP/OPP and asbestos	29	
	9.2	Total R	ecoverable Hydrocarbons (TRH) and Benzene Tolue	ene Ethylbenzene Xyl	ene
		(BTEX)		30	
	9.3	Ecologi	cal Investigation Levels	31	
10.	RES	ULTS		33	
	10.1	Subsurf	face Conditions	33	
	10.2	Laborat	tory Analytical Results	33	
		10.2.1	Heavy Metals (HM)	33	
		10.2.1	Organochlorine Pesticides / Organophosphorus Pestici	des (OCP/OPP) 36	
		10.2.2	Polycyclic Aromatic Hydrocarbons (PAH)	37	
		10.2.3	Total Recoverable Hydrocarbons (TRH) - 2013 NEPM I	Fractions 38	
	10.2.4 Benzene, Toluene, Ethyl Benze		Benzene, Toluene, Ethyl Benzene and Xylene (BTEX) -	2013 NEPM Fractions	
				40	
		10.2.5	Asbestos	41	
		10.2.6	Swamp/dam water results	41	
	10.3	Evaluat	tion Analytical Quality Assurance	42	
		10.3.1	Duplicate Sample	42	
		10.3.2	Trip Spike	44	
		10.3.1	Trip Blank	44	
11.	11. DISCUSSION		46		
	11.1	Soil Co	ntamination Summary	46	
12.	CON	NCLUS	IONS AND RECOMMENDATIONS	47	
13.	REF	ERENC	CES	49	

Appendices

А	Aerial Photographs
В	Planning Certificate Under Section 10.7
С	Lotsearch
D	Borehole Logs
Е	Laboratory Results

EXECUTIVE SUMMARY

Geotesta was engaged by Bathla Group to conduct a Preliminary Site Investigation (PSI) on the site referred to as 13L and Lot 7 DP223428 Narromine Rd, Dubbo NSW 2830.

The PSI was conducted in general accordance with "Managing Land Contamination Planning Guidelines SEPP 55" and this report compiled, taking into consideration the *NSW EPA Consultants reporting on Contaminated Land Guidelines update May 2020.* The PSI contains an appraisal of the site's history and a report based on a visual site inspection and assessment. All relevant information about the site was assessed to determine the potential for site contamination. To support the outcomes of the PSI a limited sampling and analysis program was implemented.

This report is based only on the information provided at the time of this report preparation and may not be valid if changes are made to the site conditions and/or soil and groundwater.

The objectives of this PSI are to:

- assess the past uses of the site and the potential environmental impacts that they may have had on the environmental condition of the site;
- conduct a soil sampling and analysis program to assess the current environmental condition;
- identify potential environmental risks associated with the site;
- assess the requirements for additional investigations; and
- address the requirements of the planning authority.

The following scope of works was implemented to achieve the objectives of the PSI.

The PSI was conducted in general accordance with the Australian Standard AS 4482.1 (2005) *Guide to the investigation and sampling of sites with potentially contaminated soil, Part 1: Non volatile and semi-volatile compounds,* the Australian Standard AS 4482.2-1999 *Guide to the sampling and investigation of potentially contaminated soil Part 2: Volatile substances,* the National Environment Protection (Assessment of Site Contamination) Amendment Measure 2013 No1, and other relevant NSW guidelines and legislation, including the NSW EPA Sampling Guidelines (1995).

The scope of works included the following:

- A site inspection;
- historical aerial photographs;

- public record search, such as Council, OEH, EPA etc;
- geological and hydrogeological review;
- conduct a soil sampling and analysis program; and
- production of this report on the contamination status of the site.

Activities undertaken to achieve the above objectives are reported and discussed in the following sections of the report.

The analytical results are discussed following:

- Detected concentrations of all soil heavy metal analytes were within the Site Assessment Criteria (SAC).
- Concentrations of Organochlorine Pesticides/Organophosphorus Pesticides (OCP/OPP) were below the laboratory reporting limit (LOR) and the Site Assessment Criteria.
- Concentrations of PAH and BTEX analytes were below the laboratory reporting limit and therefore within the Site Assessment Criteria
- One exceedance in TRH Fraction F3: C16-34 was detected in Sample DI-11-2, having exceeded the TRH Criteria / ESL (Fine Soil). Regarding the Hydrocarbon exceedance, given that the sample was sampled in a tree lined area and there was no visual evidence of hydrocarbons in the soil such as oil staining, Geotesta Pty Ltd is of the opinion, the hydrocarbons are natural, often associated with oils from eucalyptus trees and dropped leaves.
- All remaining concentrations of TRH analytes were below the laboratory reporting limit (LOR) and therefore within the Site Assessment Criteria (SAC).
- No traces of asbestos were detected in the samples analysed above the Reporting Limit of 0.01% w/w. No suspected asbestos containing materials (ACM) were observed on site during the inspection.
- Detected concentrations of copper, nickel and zinc within the water sample exceeded the adopted Site Assessment Criteria (ANZEC 95% Freshwater Guidelines). All remaining metal and OCP/OPP Pesticides screened were within the SAC

Based on the assessment undertaken, the following conclusions and recommendations can be made:

- Geotesta Pty Ltd is of the opinion, that the detected TRH Fraction F3: C16-34 at Sample location# DI-11-2 are natural hydrocarbons, associated with oils from eucalyptus trees and dropped leaves. Given that the sample was sampled in a tree lined area and there was no visual evidence or odours of hydrocarbons in the soil such as oil staining.
- Given the heavy metal exceedances (copper, nickel and zinc) within the dam water sampled, dam decommissioning can be performed once the Dam Decommissioning reports have been issued.
- The conducted Preliminary Site Investigation's limited soil sampling and analysis program indicated a **low** risk of soil contamination. It is the opinion of Geotesta Pty Ltd that the site is suitable for the proposed development pending an additional Data Gap Contamination Assessment is undertaken.
- Due to the existence of a data-gap in this investigation, a further assessment post demolition of the existing structures/dwellings is required to address further potential AECs identified previously and to determine if any contamination hotspots exist within the footprint of the existing sheds and dwellings. The Gap Assessment scope must also include the following:
 - A Delineation Assessment is recommended in the vicinity of the TRH Fraction F3: C16-34 concentration elevation at the location of Sample# DI-11-2
 - Any stockpiles and areas under stockpiled materials that were not assessed at the time of the PSI or are new to site, will require sampling as part of the Data Gap Assessment.

1. INTRODUCTION

Geotesta was engaged by Bathla Group to conduct a Site Contamination Investigation (PSI) on the site referred to as 13L and Lot 7 DP223428 Narromine Rd, Dubbo NSW 2830.

The PSI was conducted in general accordance with "Managing Land Contamination Planning Guidelines SEPP 55" and this report compiled, taking into consideration the NSW EPA Consultants reporting on Contaminated Land Guidelines update May 2020. The PSI contains an appraisal of the site's history, a report based on a visual site inspection and an assessment of analytes for contamination. All relevant information about the site was assessed to determine the potential for site contamination. To support the outcomes of the PSI a limited sampling and analysis program was implemented.

This report is based only on the information provided at the time of this report preparation and may not be valid if changes are made to the site conditions and/or soil and groundwater.

2. PLANNING GUIDELINES

The land is to be developed for standard residential use with on-site roadways. The planning authority must consider the possibility that the previous land use has the potential to cause contamination of the site as well as the potential risk to health or the environment from that contamination. The PSI is the first stage to determine if there is a potential for land contamination that has a potential to impact the development application (DA).

The Guidelines recommend that re-zonings, development control plans and development applications (DAs) are backed up by information demonstrating that the land is suitable for the proposed use or can be made suitable, either by remediation or by the way the land is used.

3. OBJECTIVE

The objectives of this PSI are to:

- assess the past uses of the site and the potential environmental impacts that they may have had on the environmental condition of the site;
- conduct a soil sampling and analysis program to assess the current environmental condition;
- identify potential environmental risks associated with the site;
- assess the requirements for additional investigations; and
- address the requirements of the planning authority.

4. SCOPE OF WORKS

The following scope of works was implemented to achieve the objectives of the PSI.

The PSI was conducted in general accordance with the Australian Standard AS 4482.1 (2005) *Guide to the investigation and sampling of sites with potentially contaminated soil, Part 1: Non volatile and semi-volatile compounds,* the Australian Standard AS 4482.2-1999 *Guide to the sampling and investigation of potentially contaminated soil Part 2: Volatile substances,* the National Environment Protection (Assessment of Site Contamination) Amendment Measure 2013 No1, and other relevant NSW guidelines and legislation, including the NSW EPA Sampling Guidelines (1995).

The scope of works included the following:

- A site inspection;
- historical aerial photographs;
- public record search, such as Council, OEH, EPA etc;
- geological and hydrogeological review;
- conduct a soil sampling and analysis program; and
- production of this report on the contamination status of the site.

Activities undertaken to achieve the above objectives are reported and discussed in the following sections.

5. SITE DESCRIPTION

5.1 Site Identification

The site under investigation is situated at 13L (i.e., Lot 22 DP1038924) and Lot 7 DP223428 Narromine Rd, Dubbo NSW 2830 on the western side of Narromine Road and is approximately 400 km (by road) northwest of Sydney CBD. The site is irregular in shape and has a total area of 271,9 ha. The site is located within The Dubbo Regional Council. The site identification detail is presented in Table 1. The site location is also shown in Figure 1.

Site Details	Site Observations		
Address	13L Narromine Road Dubbo, NSW and Jannali Road, Dubbo, NSW		
Address	2830		
Lot/Section/Plan no:	Lot 22 DP1038924 and Lot 7 DP223428		
Local Government Area	Dubbo Regional Council		
Site Area (Approximately)	~ 271,9 ha		
	IN2 - Light Industrial		
Zoning	R2 - Low Density Residential		
Zoning	R5 - Large Lot Residential		
	RU2 - Rural Landscape		
Current Land Use	Light Industrial (IN2), Low Density Residential (R2), Large Lot		
Current Land Use	Residential (R5), Rural Landscape (RU2), Infrastructure (SP2)		

Table 1: Site Identification

Figure 1. Site Location Plan

5.2 Proposed Development

It is understood that the site is proposed for a residential subdivision with on-site driveways. The site lies within the following planning zones:

- Light Industrial (IN2)
- Large Lot Residential (R5)
- Infrastructure (SP2)

- Low Density Residential (R2)
- Rural Landscape (RU2)

Planning zones that are in the vicinity of the site include:

- Neighbourhood Centre (B1)
- Local Centre (B2)

- Commercial Core (B3)
- Business Development (B5)
- Environmental Conservation (C3)
- Heavy Industrial (IN3)
- Low Density Residential (R2)
- Public Recreation (RE1)
- Primary Production (RU1)
- Infrastructure (SP2)
- Recreational Waterways (W2)

- Mixed Use (B4)
- Enterprise Corridor (B6)
- Light Industrial (IN2)
- General Residential (R1)
- Large Lot Residential (R5)
- Private Recreation (RE2)
- Rural Landscape (RU2)
- Tourist (SP3)

5.3 Site Details, Geology and Topography

The subject site of the proposed development mostly consists of a vacant land covered with grass and distributed trees. However, in the site, there were a few old fuel barrels, garages and sheds containing demolished vehicles and straw/hay bales. There was also one old single-level residential dwelling. It seems the site has been used mainly for livestock/agriculture purposes. The site is relatively flat with an average gradient of approximately <5% at some locations.

The geological origin of the soil profile was identified from our visual examination of the soil samples, geotechnical experience, and reference to geological maps of the area. The geological map of the area indicates that the site is underlain by Pilliga Sandstone of the Surat Basin and comprises of massive to cross-bedded coarse pebbly lithic-quartz sandstone, minor fine-grained sandstone and siltstone, (Jp). The geological maps indicate igneous outcrops comprising of tholeiite, alkali basalt, basanite, nephelinite, limburgite, trachyte and rare obsidian, (Tb) (Dubbo, 1:100 000, Geological Sheet 8633).

The ESPADE web application provided by NSW Department of Planning, Industry and Environment for the Wongarbon region indicates site subsoils can comprise Euchrozems which are strongly structured, dark reddish-brown light to medium clay; pH 6.5 - 8.0. Changing at 40 cm to reddish-brown to dark red light to medium clay; strong polyhedral to prismatic structure; pH ranges from 7.0 - 8.5. Calcium carbonate often occurs at depth (80 to 100 cm).

The site lies at an elevation approximately averaging 300 metres above sea level (ASL) referenced to Australian Height Datum (AHD). (<u>http://en-au.topographic-map.com</u>).

5.4 Site Regional Meteorology and Hydrogeology

The following climate information from the Commonwealth Bureau of Meteorology website (http://www.bom.gov.au/) can be obtained:

- Mean maximum temperature of 24.7°C from January to December at Dubbo Airport AWS approximately 2.5 km away from site.
- Mean minimum temperature of 10.3°C from January to December at Dubbo Airport AWS approximately 2.5 km away from site.
- Lowest annual rainfall of 211.2 mm and highest annual rainfall of 924.4 mm, averaging 569.6mm from January to December at Dubbo Airport AWS approximately 2.5 km away from site.

Groundwater salinity is mapped >14000mg/l and therefore unsuitable for stock use. The direction of the regional groundwater flow is expected to follow the slight slope of the regional topography.

5.5 Registered Bore Search

A search of Department Primary Industries - Office of Water records identified twenty-two existing groundwater wells located within an approximate distance of 500 metre from the site.

Bore ID	Bore Depth(m)	Latitude	Longitude
GW040471.1.1	67.1	-32.229826	148.555625
GW063785.1.1	30	-32.226215	148.553402
GW057513.1.1	65	-32.230659	148.575624
GW061181.1.1	70	-32.232326	148.560902
GW062544.1.1	151	-32.2446	148.560161
GW057092.1.1	42	-32.223993	148.564513
GW804991.1.1	35.5	-32.228475	148.550219
GW052247.1.1	65	-32.226493	148.570347
GW001241.1.1	85.3	-32.228715	148.554236
GW800690.1.1	84	-32.244553	148.560236
GW805096.1.1	182	-32.251344	148.557456
GW056342.1.1	51.8	-32.248715	148.546458
GW001249.1.1	40.2	-32.242882	148.559236

Table 2: Bore wells Identification

PSI REPORT - 13L Narromine Road and Jannali Road, Dubbo, NSW 2830

GW065788.1.1	99	-32.236339	148.548189
GW051858.1.1	49.4	-32.222882	148.563402
GW806046.1.1	88	-32.23093	148.561281
GW060792.1.1	91	-32.23897	148.554305
GW802547.1.1	12	-32.24008	148.587803
GW049357.1.1	39.6	-32.241493	148.557291
GW050571.1.1	61	-32.245937	148.547014
GW802626.1.1	11	-32.246191	148.574072
GW066564.1.1	87	-32.238447	148.554296

5.6 Acid Sulphate Soils

The Department for Infrastructure, Planning and Natural Resources (DIPNR) Acid Sulphate Soils Risk Mapping (1997) and the NSW Environmental Acid Sulphate Soil Risk Mapping eSPADE application indicates that the Site is not expected to be underlain by acid sulphate soils.

5.7 Summary of Site History

5.7.1 Historical Background

The aerial photographs indicate that the site has been used for livestock/agricultural purposes. The site consists of a single-story house with multiple sheds that were noted to contain straw/hay bales, fuel barrels, chemicals, combustible liquid, generators and equipment, and storage of vehicles.

5.7.2 Aerial Photograph Review

An aerial photograph search was conducted on 17th December 2021. The historical aerial photos were viewed with observations presented in Table 3. Historical aerial photographs are presented in Appendix A.

Year	Site Observations	Surrounding Area
1964	Four small basins/dams onsite. Three small sheds/dwellings on far western side of site. Majority of site vacant land, tree growth west of site.	Low-density residential dwellings south-east of site. Airport north of site. Vacant land south and west of site.
1971	Two small shed/dwellings constructed far west of site.	Small structures built north of site.
1974	No change from previous photograph.	No change from the previous photograph.
1980	No change from previous photograph.	Structures constructed north of site. Dwellings constructed south-east of site.
1991	No change from previous photograph.	Further dwellings constructed east and south of site. Dwellings constructed north of site.
1995	No change from previous photograph.	Dwellings constructed in surrounding area.
1996	No change from previous photograph.	No change from previous photograph.
2011	Several agricultural livestock/farming zones visible on far west side, near sheds/dwellings	Structures developed in surrounding areas.
2019	Stockpiles visible near sheds/dwellings.	Structures developed north and south of site.
2020	No change from previous photograph.	No change from previous photograph.
2021	No change from previous photograph.	No change from previous photograph.

Table 3: Aerial Photograph Review

5.8 Site Walkover

Results of the site walkover inspection carried out for 13L Narromine Road Dubbo, NSW (Lot 22 DP1038924) on 27-29 January 2022 is presented below:

- The site was divided to several paddles mainly used for livestock purposes.
- A few garages and sheds containing straw bales and old vehicles are observed.
- Several fuel barrels exist in the site.
- A few small dams are located on the site.
- Vegetation onsite appeared to be healthy.
- The site appeared to drain to the east of the site with the site sloping towards the east at a gradient < 5%.

Results of the site walkover inspection carried out for Jannali Road, Dubbo, NSW 2830 (Lot 7 DP223428) on 11 May 2022 is presented below:

- Vacant land, grass covered ground surfaces, multiple trees located in the centre of the property
- Vegetation onsite appeared to be healthy, with no signs of vegetation die-back.

- The site's northern section terrain is essentially flat, the southern section's terrain appeared to slope towards the south at a gradient of < 5 10 %.
- The site appeared to drain predominantly to the south

5.9 NSW OEH/EPA Records

The site or nearby surrounding areas have no notices under the Contaminated Land Management Act (1997) or the Environmentally Hazardous Chemicals Act (1985).

5.10 Planning Certificate

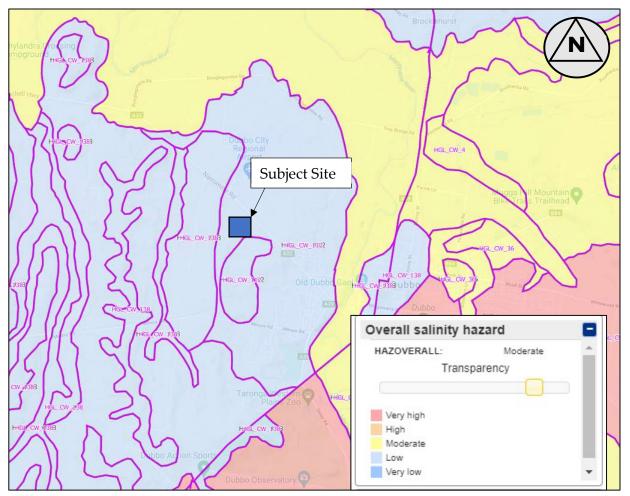
Planning Certificate Under Section 10.7 (Certificate No: 436) for the site (Lot: 22 DP: 1038924, 13L Narromine Road Dubbo, NSW) was sourced from Dubbo Regional Council on 24 February 2022. The certificate is presented in Appendix B. The Planning Certificate, which is applicable to Lot 22 DP 1038924, indicates that there are no matters arising under Section 59(2) of the Contaminated Land Management Act 1997 (Act), as follows:

- The land is NOT significantly contaminated land (or part of the land) within the meaning of the Act at the date when the certificates were issued.
- The land is NOT the subject to a management order within the meaning of the Act at the date when the certificates were issued.
- The land is NOT the subject of an approval voluntary management proposal within the meaning of the Act at the date when the certificates were issued.
- The land is NOT the subject of an ongoing maintenance order within the meaning of the Act at the date when the certificates were issued.
- The land is NOT the subject of a site audit statement within the meaning of the Act at the date when the certificates were issued.

5.11 Historical Land Titles

No Historical Land Titles search was conducted for the site.

5.12 Lotsearch


A Lotsearch report is provided in Appendix C for JANNALI ROAD DUBBO 2830, NSW Lot# 7/-/DP223428.

5.13 Salinity Mapping

The eSPADE web app found at <u>https://www.environment.nsw.gov.au/eSpade2WebApp</u> indicated that the site is in an area of low salinity potential (see Figure 2).

The following observations/inspections were noted onsite:

- ✓ Vegetation growth appeared healthy throughout the site.
- ✓ No water marks or salt crystals observed on the ground surface

Figure 2. Salinity Potential Map

6. CONCEPTUAL SITE MODEL

6.1 Areas of Environmental Concern

Our assessment of site AECs and COPCs (Table 4) is made based on available site history, aerial photograph interpretation and site walkovers. A map showing locations of identified AECs is provided in Figure 3.

AEC	Potential for Contamination	СОРС	Contamination Likelihood
A – Areas of Dwellings/Sheds	Heavy metals may have been used underneath dwellings. Sheds or areas surrounding sheds may have been used as fuel storage, oil or drums of unknown content; asbestos sheeting, may include lead-based paints.	HM, OCP/OPP and Asbestos	Medium
B – Stockpiles and Site fillings	Contaminants from old vehicles or equipment, old generators, fuels and chemicals, rusted metal, wood, rubble material and general refuse may have spilled, leaked or been distributed onto underlying soil.	HM, TRH, PAH, BTEX and OCP/OPP	Medium
C – Areas of light agricultural/garden farm cropping	Heavy metals and pesticides used for light agricultural activities may pose potential risk of contamination	HM, TRH and OCP/OPP	Low
D – Fuel Storage	Mobile oil tanks, onsite fuel pumping stations and combustible fuel liquid storage containers may pose potential risk of contamination into soil via leakage.	HM, TRH, PAH and BTEX	Medium to High
E – Dam	Contaminants resulting from agricultural land uses may have been washed into and accumulated in the dam during its use. Infilling of the dam using unknown fill containing potential contaminants, may have contaminated the underlying soil.	HM, OCP/OPP, TRH, Ecoli, Faecal Coliforms, Nutrients, EC, pH, Salinity, BOD, Turbidity and Dissolved Oxygen	Medium

Table 4: Areas of Environmental Concern and Contaminants of Primary Concern (COPC)

6.2 Potential Receptors and Sensitive Environments

The residents and visitors/workers on site are identified as immediately sensitive environmental receptors. A summary of the identified potential receptors and sensitive environments is detailed below in Table 5.

Receptors/Environments	Potential Pathway		
Human Receptors:• Future site workers and visitors• Site labourers/workers• Residents of adjacent properties• Trespassers	 Direct skin contact Ingestion of contaminated soil Inhalation via airborne dust 		
Sensitive Environments: • Site fauna and flora	 Migration via stormwater run-off or within groundwater Migration into underlying soil 		

Table 5: Potential Receptors and Sensitive Environments

6.3 **Potential for migration and exposure of contamination**

During site investigation, several potential receptors for off-site migration of potential contamination has been raised. Site history information and onsite inspection observations indicated a potential for contaminants to present a direct contact and inhalation exposure risk on site. Exposure routes of contaminants could potentially be through direct contact with exposed soils (Heavy Metals, TPH, PAHs, BTEX and OCP/OPP) or airborne dust (Asbestos). These exposure risks will "likely", and potentially at its highest risk during any demolition, earthworks or construction phases within the site.

There is a potential for these contaminates to be present within underlying soils and have the ability to migrate vertically (dispersed up into the atmosphere, or infiltrate down into the groundwater) and migrate horizontally (through stormwater runoff pathways) from the proposed development.

6.4 Assessment of Preliminary Site Investigation and Recommendations

The results of the site history indicated the site has been used for residential purposes for at least 46 years, with the eastern half of site being used for the transportation of construction material via heavy vehicle trucks. Aerial photography indicated the western half of the site appears untouched since 1947 and continues to be grass cover. At the time of investigation, large stockpiles of rail sleepers and iron tracks were observed on the northern side of site, adjacent to an unloading/loading zone for heavy vehicles and parking zone for trailers. Stockpiles of wood, sheet metal excavator buckets, rusted trailers and equipment, fuel and chemicals, were noted onsite. During site investigation it was highly likely that fuel, chemicals, material and vehicles were being stored in the sheds observed onsite. Excavators were observed onsite, as well as mobile oil storage tanks. Shipping containers with combustible liquid were identified onsite near the storage shed. These observations determined onsite during site investigation pose environmental concern to the surrounding soil.

Based on the site history and walkthrough, the site is considered to have the following environmental concerns of:

- Areas of dwellings/sheds may currently (of have previously) stored fuel, oils, pesticides, zinc treated (galvanised) metals and/or lead based paints.
- Contaminants from the contents of the stockpiles, fuel barrels, oil storage tanks and heavy vehicles may have leaked, spilled or been distributed onto the underlying soil.
- Areas of possible cropping/farming activity may have introduced heavy metals or pesticides to the soil.
- Areas near mobile oil tanks and fuel storage tanks may have heavy metal, fuel and chemical contaminants leaked or spilled into the underlying soil.

To address identified AECs, intrusive soil/water sampling regime is recommended to determine what, if any, remediation is required to render the site fit for residential use. A soil sampling plan is to be developed based on a judgemental or systematic sampling pattern and risk-based assessment.

Assessment shall address each of the identified AECs and assess COPC identified for each AEC (Table 4). Results of the site testing shall be assessed against Site Acceptance Criteria (SAC) with reference to ASC NEPM (1999, amended 2013).

7. SAMPLING AND ANALYSIS QUALITY PLAN (SAQP)

A limited SAQP was developed to ensure that data collected for this PSI was representative and provided a robust basis for site assessment decisions considering the areas of environmental concerns identified in Section 6.

Preparation of the SAQP includes:

- Field Screening and Sampling Program;
- Sampling QA/QC;
- Sample Handling, Preservation and Storage Procedures;
- Analytical Program and Site Investigation Data Assessment

7.1 Field Screening and Sampling Program

7.1.1 Data Quality Plan

Investigations at the Site included a review of the preliminary site investigation prior to the commencement of work. The sampling regime for the investigation area of the Site was in accordance with the requirements as outlined in the NSW EPA Guidelines for Consultants Reporting on Contaminated Sites.

7.1.2 Visual Inspection

During the sampling works for the site contamination investigation report, a visual inspection was conducted to ensure no suspected asbestos containing materials (ACM) were present. The inspections for ACM were undertaken in a systematic, back and forth fashion over the site to identify suspected ACM.

7.1.3 Soil Sampling Techniques

All techniques used for soil sampling, are based on methods specified by the National Environmental Protection (Assessment of Site Contamination) Measure (NEPM, 2013). Experienced personnel of Geotesta collected all the samples for delivery to NATA accredited laboratory of Eurofins MGT. Soil samples for chemical analysis were in a judgemental sampling pattern based on site history and AECs.

7.1.4 Rationale for Sampling Program and Locations

The justification of the sampling point regime for the assessment was based on the investigator's knowledge, operational requirements, experience and history of the Site

(Judgement Sampling Pattern). All historical investigations and anecdotal evidence supported the sampling approach adopted and provided for samples to be collected in an unbiased manner. All the AECs including heavy metals, OCP/OPP, TRH, PAH, BTEX and asbestos concentrations have been targeted.

7.1.5 Sampling Program

Fieldwork for this investigation was carried out on 28 January 2022 and 11 May 2022 and included excavation of thirty-nine (39) boreholes. Some boreholes were advanced by vehicle-mounted auger to a maximum depth of 0.4m as part of Geotechnical Site Investigation in conjunction with this detailed site investigation, and others by hand auger. The sampling locations are shown in Figure 4. Environmental soil samples were collected from the surface and at lower depths. Standard procedures were used for sampling and soil sampling methodology was completed to meet data quality objectives.

7.1.6 Soil Logging

Boreholes were logged by an experienced environmental/geotechnical engineer in accordance with Standard procedures. The borehole logs are presented in Appendix D.

7.2 Sampling Quality control (QC) / Quality Assurance (QA)

7.2.1 Sampling Procedures

General soil sampling procedures included wearing of plastic disposable gloves when handling sampling equipment and soil and changed between collections of samples. All sampling equipment was clean prior to commencement of sampling. Equipment for soil sampling included an auger, stainless-steel bowl, stainless steel trowel and knife. All equipment was decontaminated between samplings. The following measures have been utilized during the sampling to achieve the sampling quality controls.

7.2.1.1 Sample Containers

Soil samples collected during the investigation were placed immediately into laboratory prepared glass jars with Teflon lid. Standard identification labels were adhered to each individual container and labelled according to depth, date, sampling team and media collected.

7.2.1.2 Sample Tracking and Identification

All samples were identified with a unique sample number and all sampling details were included on the sample label and were reproduced on the field sample log and chain of custody records.

7.2.1.3 Decontamination

All equipment used in the sampling program, which includes a steel shovel, and a hand auger was decontaminated prior to use and between samples to prevent cross contamination. Decontamination of equipment involved the following procedures:

- Cleaning equipment in potable water to remove gross contamination;

- Cleaning in a solution of Decon-90TM;

- Rinsing in clean demineralised water then wiping with clean lint free cloths.

7.2.1.4 Sample Transport

All samples were packed in ice from the time of collection and were transported under chain of custody from the Site to NATA registered laboratory identified as Eurofins MGT Services in Lane Cove. Collected samples were placed into an ice chilled cooler-box. During the project, the laboratory reported that all the samples arrived intact, with appropriate preservation medium and were analysed within their relative holding times for the respective analytes.

7.2.2 Analytical QA/QC Procedures

Quality control is achieved by utilising NATA accredited laboratories, using standard methods supported by internal duplicates, the checking of high, abnormal, or otherwise anomalous results against background and other chemical results for the sample concerned.

Quality assurance is achieved by confirming field or anticipated results based upon the comparison of field observations with laboratory results. One duplicate sample (D6) was taken for the first day of sampling and was duplicate sample of parent samples Di-6. Second duplicate sample (EBH4) was taken for the second day of sampling and was duplicate sample of parent samples BD1.

The laboratory undertakes additional duplicate analysis as part of their internal quality assurance program. Chain of Custody documentations were used to ensure that sample tracking and custody can be cross-checked at any point in the transfer of samples from the field to hand-over to the laboratory.

Reinstate sample were collected for this investigation, however, we do not consider the absence of these QA/QC results to have impacted the useability of the data for this investigation, as discussed in section 8.3.

8. SAMPLING PROGRAM

8.1 Field Investigation

Fieldwork for this investigation was carried out on 28 January 2022 and 11 May 2022 and included drilling of thirty-nine (39) boreholes. Boreholes were advanced by both hand auger and a vehicle-mounted auger to a maximum depth of 400mm. The sampling locations are shown in Figure 4. Environmental soil samples were collected from the surface and at lower depths and held for selected analysis.

During the sampling works a visual inspection was also conducted to ensure no suspected asbestos containing materials (ACM) were visible. The inspections for asbestos were undertaken in a systematic, back and forth fashion over the site to identify suspected ACM.

8.2 Analytical Program

Samples were to be analysed to provide information for the characterisation of the most likely contaminated soils. This allowed the assessment of soils samples against the Site Acceptance Criteria. All analyses were to be carried out by NATA certified laboratory Eurofins MGT in accordance with Chain of Custody (CoC) instructions supplied by Geotesta. The samples were checked for heavy metals, OCP/OPP, PAH, TRH, BTEX and Asbestos. Summary of the soil laboratory analyses is presented in Table 6. The details of samples' types and depths are provided in Table 7.

DI6 and the	duplicate	sample D6
-------------	-----------	-----------

COC	Number of samples analysed
Suite B10 ¹	6
Heavy Metals ²	36
Suite B14 ³	5
Suite B15 ⁴	12
Suite B7A ⁵	12
Asbestos	17

Table 6: Summary of soil laboratory program

Notes:

¹Suite B10: TRH, BTEX, PAH, OCP, OPP, Arsenic, cadmium, Chromium, copper, lead, Mercury, Nickel, Zinc
²Heavy metals: Arsenic, cadmium, Chromium, copper, lead, Mercury, Nickel, Zinc
³Suite B14: OCP and OPP
⁴Suite B15: OCP, OPP, PCB

⁵Suite B7A: TRH, BTEX, PAH, Phenols, Arsenic, Cadmium, Chromium, Copper, Lead, Mercury, Nickel, Zinc, Mercury

	_							
Sample	Depth	Sample	Suite	HM^1	Suite	Suite	Suite	Asbestos
ID (BH)	(m)	Type	B10		B14	B15	B7A	
DI-1-1	0.1	Silty CLAY		×				
DI-2-1	0.15	Topsoil		×				
DI-2-3	0.1	Topsoil		×				
DI-3	0.5	Silty CLAY		×				
DI-3-2	0.15	Topsoil		×				
DI-3-3	0.2	Topsoil		×				
DI-4	0.5	Silty CLAY		×	×			
DI-4-3	0.1	Silty CLAY		×				
DI-5	1.0	Silty CLAY		×				
DI-5-1	0.1	Topsoil		×				
DI-6	1.0	Silty CLAY		×	×			
D-6-2	0.1	Topsoil		×	×			
DI-7-1	0.1	Topsoil	×					
DI-7-2	0.2	Topsoil		×	×			
DI-8-1	0.1	Topsoil		×				
DI-9	0.5	Silty CLAY	×					
DI-10-1	0.1	Topsoil		×				
DI-10-2	0.15	Topsoil		×	×			
DI-11-1	0.1	Silty CLAY	×					
DI-11-2	0.15	Silty CLAY	×					
DI-12-1	0.2	Silty CLAY	×					
DI-13-1	0.2	Topsoil	×					
ASB-7-1	0.15	Silty CLAY						×
ASB-11-1	0.1	Silty CLAY						×
ASB12-1	0.1	Topsoil						×
ASB-13-1	0.2	Topsoil						×
ASB-14-1	0.1	Silty CLAY						×
EBH1	0.4	Silty CLAY		×		×	×	×
EBH2	0.2	Topsoil		×		×	×	×
EBH3	0.2	Topsoil		×		×	×	×
EBH4	0.2	Topsoil		×		×	×	×
EBH5	0.2	Topsoil		×		×	×	×
EBH6	0.2	Topsoil		×		×	×	×
EBH7	0.2	Topsoil		×		×	×	×
EBH8	0.2	Topsoil		×		×	×	×
EBH9	0.2	Topsoil		×		×	×	×
EBH10	0.2	Topsoil		×		×	×	×
EBH11	0.2	Topsoil		×		×	×	×
EBH12	0.2	Topsoil	1	×		×	×	×

Table 7: Samples Depth and Requested Lab Tests

Asterisk (*) indicates previous samples collected on 24 September 2021 ¹HM: Heavy metal ²OCP: Organochloride pesticides ²OPP: Organophosphate pesticides ³R17: Total Recoverable Hydrocarbons - 1999 NEPM Fractions: Volatile Organics ³R17: Total Recoverable Hydrocarbons - 2013 NEPM Fractions: Volatile Organics ³R17: Total Recoverable Hydrocarbons, Organochlorine Pesticides Polycyclic Aromatic Hydrocarbons, Organochlorine Pesticides Polychlorinated Biphenyls (PCB), Spectated Phenols, Total Recoverable Hydrocarbons - 2013 NEPM Fractions, Chromium (hexavalent), Cyanide (total) and Fluoride Heavy Metals such as arsenic, copper, lead, etc., Total Recoverable Hydrocarbons - 1999 NEPM Fractions, TRH: Total recoverable hydrocarbons PAH: Polycyclic aromatic hydrocarbons BTEX: Benzene, toluene, ethyl benzene, xylene PCB: Polychlorinated Biphenyls

9. ASSESSMENT CRITERIA

9.1 Heavy metals, PAH, PCB, OCP/OPP and asbestos

Based on the proposed development, Health Investigation levels (HIL) of Residential A with soil access (ASC NEPM 1999, amended 2013) have been adopted as the Soil Assessment Criteria (SAC) for metals, OCP, OPP and PAH for this investigation.

The bonded asbestos Health Screening Levels (HSLs) in soils (NEPM 2013) were also adopted for the Site. In addition to soil samples tested for asbestos, the 'presence/absence' of asbestos in soil material has been adopted as the SAC. Generic Ecological Investigation Levels (EILS) will also be used to assess the site to confirm suitability for the proposed residential land use.

Table 8 presents HILs for heavy metals, PAH, pesticides (OCP/OPP) and HSLs asbestos.

Analytes	HILs-Residential A ¹	HSLs-Residential A ¹
Arsenic	100	
Cadmium	20	
Chromium (VI)	100	
Copper	6000	
Lead	300	
Mercury (inorganic)	40	
Nickel	400	
Zinc	7400	
Total PAHs	300	
Benzo(a)PyreneTEQ	3	
РСВ	1	
Pesticides:		
(Aldrin/DielDrin),	6	
Chlordane	50	
DDT+DDE+DDD	240	
Chlorpyrifos	160	
Asbestos:		
Bonded ACM ² ,		0.01%
Friable Asbestos ³ (FA), Asbestos Fines ⁴ (AF),		0.001%
Surface Asbestos (0.1m)		No Visible

Table 8: Site Assessment Criteria for Soils (mg/kg)

1- Criteria adopted for residential areas of the Site

2- Bonded ACM (bonded Asbestos) - asbestos-containing-material which is in sound condition and where the asbestos is bound in a matrix such as cement or resin (e.g. asbestos fencing and vinyl tiles). Bonded ACM refers to, in this instance, material that cannot pass a 7 mm x 7 mm sieve.

3- Fibrous Asbestos - friable asbestos material and includes severely weathered cement sheet, insulation products and woven asbestos material. This material is in a degraded condition such that it can be broken or crumbled by hand pressure.

4- Asbestos Fines - AF includes free fibres, small fibre bundles and also small fragments of bonded ACM that pass through a 7 mm x 7 mm sieve.

9.2 Total Recoverable Hydrocarbons (TRH) and Benzene Toluene Ethylbenzene Xylene (BTEX)

The NEPM (2013) provides Health Screening Levels (HSLs), Ecological Screening Levels (ESLs) and Management Limits (MLs) for TRH fractions in soil based on concerns regarding ecological impacts, inhalation of vapours and direct contact with contaminant sources. The Fraction Number (i.e. hydrocarbon compound range) is identified and compared against the prescribed HSL, ESL and ML values. HSLs, ESLs and MLs take into consideration the followings:

- ✓ Carbon number range, indicated by a Fraction Number (F1, F2, F3 or F4);
- ✓ Type of soil (sand, silt or clay);
- ✓ Depth to the source of contamination;
- ✓ Intended land-use

For this Site, the intended land use is HSL A – Residential with garden/accessible soil and the soil type was clay within a depth range of 0-1.0 m, 1.0 - < 2.0 m and 2.0 - < 4.0 m. The criteria are summarised in Tables 9 and 10 below. They are obtained from Table 1A(3) (HSL A & HSL B), Table 1B(6) (fine soils) and Table 1B(7) (fine soils) in NEPM (2013).

Analytes	HSL-A(Clay)	HSL-A (Clay)	HSL-A (Clay)
	0 -1 .0m	1-<2.0m	2-<4.0m
Benzene	0.7	1	2
Toluene	480	NL	NL
Ethylbenzene	NL	NL	NL
Xylene	110	310	NL
F1: C6-C10 Less	50	90	150
BTEX			
F2:C10-C16	280	NL	NL
Less Naphthalene			
FD C14 CD4			
F3: C16-C34	N/A	N/A	N/A
F4: C34-C40	N/A	N/A	N/A

Table 9: NEPM 2013 BTEX and TRH Criteria – HSL Criteria for 0-1m, 1-<2m and 2-<4m

NL = Not Limiting (i.e. the soil vapour concentration for a petroleum mixture could not exceed a level that would result in the maximum allowable vapour risk for the given scenario).

N/A = Not applicable as F3 and F4 are non-volatile and hence are not of concern for vapour intrusion.

*'Fine' refers to the soil texture grading as per NEPM 1999.

1 NEPM 2013 Amendment Table 1A(3) - Soil HSLs for vapour intrusion - 0-1.0m

2 NEPM 2013 Amendment Table 1A(3) - Soil HSLs for vapour intrusion - 1-<2.0m

3 NEPM 2013 Amendment Table 1A(3) - Soil HSLs for vapour intrusion - 2-<4.0m

	<4m	
Analytes	NEPM 2013 Amendment TRH Criteria (mg/kg dry wt.) ESL (Fine*)	NEPM 2013 Amendment TRH Criteria (mg/kg dry wt.) ML (Fine*)
Benzene	65	
Toluene	105	
Ethylbenzene	125	
Xylene	45	
F1: C6-C10	180	800
F2:C10-C16	120	1000
F3: C16-C34	1300	3500
F4: C34-C40	5600	10000

Table 10: NEPM 2013 BTEX and TRH Criteria, ESI	L and ML Criteria for 0-1m, 1-<2m and 2-
--	--

'Fine' refers to the soil texture grading as per NEPM 1999.

1 NEPM 2013 Amendment Table 1B(6) – ESLs for TPH fractions, BTEX and benzo(a)pyrene in soil.

2 NEPM 2013 Amendment Table 1B(7) - Management Limits for TPH fractions F1-F4 in soil.

9.3 Ecological Investigation Levels

Ecological Investigation Levels (EILS) were also used to assess the site to confirm suitability for the proposed residential land use.

The current version of the NEPM (2013) specifies default EILs for arsenic, lead, DDT and naphthalene.

NEPM (2013) specifies a methodology for the derivation of site-specific EILs for nickel, chromium III, copper and zinc. The derivation process requires determination of ambient background concentrations (ABC) and added contaminant limits (ACLs) for these chemicals, and the EIL is then calculated as the ABC plus the ACL.

In Samples# Di-7-2 & EBH5, soil properties to be measured for site-specific derivation of ACLs for Cr(III), Cu, Ni and Zn

• pH, CEC and % Clay.

Table 11 presents EILs derived from the measured soil properties in sample#EBH5 for aged soils in Urban Residential/Public Open Space based, utilising ABC levels derived from sample# Di-5 & EIL.

180

170

-

-

Analyte	pН	CEC^	Clay Content*	ABC	ACL	EIL
Zinc	7.0	15.5	-	21	400	421
Copper	7.0	15.5	-	19	235	190
Chromium (III)	-	-	17%	99 ²	400	499
Nickel	-	15.5	-	41	170	211
Lead	-	-	-	7	1100	1,107
Arsenic	-	-	-	-	-	100

Table 11: NEPM (2013) EILs for Urban Residential and Public Open Spaces

Note(s):

DDT

Naphthalene

1. ABC = ambient background concentrations, ACL = added contaminant limits, ESL = ecological screening levels, CEC = cation exchange capacity;

-

-

-

_

2. Total Chromium utilised for Cr(III)

-

-

-

-

10. RESULTS

10.1 Subsurface Conditions

A summary of sub-surface soil conditions encountered in the site is presented below:

Based on the fieldwork results, an approximately 0.3m thick topsoil/fill layer was observed in boreholes.

The material below the topsoil/fill material was mostly stiff to hard Silty CLAY. Augur refusal was encountered in some of the boreholes at depths varying between 1.8m – 2.5m.

Groundwater was not encountered in any of the boreholes.

10.2 Laboratory Analytical Results

Selected soil samples were analysed for the COPCs. A summary of analytical results follows. The lab test reports are presented in Appendix E.

10.2.1 Heavy Metals (HM)

A total of twenty-four (36) soil samples were analysed for heavy metals. The results of the lab tests for the heavy metal components are presented in Table 12. The 95% UCL was calculated as a statistical analysis of the heavy metal detections including minimum, maximum and average along with the adopted SAC, and is shown in Table 13.

Sample	Sample Depth (m)	Arsenic (As)	Cadmium (Cd)	Chromium (total) (Cr)	Copper (Cu)	Lead (Pb)	Mercury (Hg)	Nickel (Ni)	Zinc (Zn)
DI-1-1	0.1	3.2	< 0.4	88	15	10	< 0.1	30	24
DI-2-1	0.15	4.3	< 0.4	99	28	14	< 0.1	70	45
DI-2-3	0.1	3.7	< 0.4	91	30	12	< 0.1	80	54
DI-3	0.5	7.2	< 0.4	160 (<1) *	33	8.9	< 0.1	100	37
DI-3-2	0.15	6.5	< 0.4	52	19	12	< 0.1	42	52
DI-3-3	0.2	7.2	< 0.4	74	23	10	< 0.1	60	62
DI-4	0.5	3.6	< 0.4	28	11	10	< 0.1	46	30
DI-4-3	0.1	3.3	< 0.4	42	15	8.3	< 0.1	28	34
DI-5	1	6.6	< 0.4	160 (<1) *	32	14	< 0.1	71	33
DI-5-1	0.1	5.3	< 0.4	120 (<1) *	22	12	< 0.1	57	40
DI-6	0.1	4.3	< 0.4	83	17	14	< 0.1	37	19
D-6-2	0.1	3.2	< 0.4	200 (<1) *	42	9.8	< 0.1	130	64
DI-7-1	0.1	7.8	< 0.4	53	15	10	< 0.1	44	33
DI-7-2	0.2	7.5	< 0.4	99	33	15	< 0.1	65	63
DI-8-1	0.1	6.3	< 0.4	130 (<1) *	15	13	< 0.1	56	29
DI-9	0.5	4.5	< 0.4	74	18	10	< 0.1	58	35
D-9	0.5	3.6	< 0.4	53	15	8.9	< 0.1	47	29
DI-10-1	0.1	3.9	< 0.4	91	22	15	< 0.1	52	34
DI-10-2	0.15	4.1	< 0.4	120 (<1) *	21	15	< 0.1	48	33
DI-11-1	0.1	3.6	< 0.4	110 (<1) *	25	13	< 0.1	80	150
DI-11-2	0.15	12	< 0.4	200 (<1) *	82	33	< 0.1	130	750
DI-12-1	0.2	4.4	< 0.4	150 (<1) *	31	45	< 0.1	94	170
DI-13-1	0.2	4.1	1.6	150 (<1) *	30	67	< 0.1	110	1200
D6	0.1	4.2	< 0.4	78	21	11	< 0.1	38	21
EBH1	0.4	3.3	< 0.4	140 (<1) *	35	< 5	< 0.1	130	52
EBH2	0.2	3.3	< 0.4	140 (<1)*	53	< 5	< 0.1	180	70
EBH3	0.2	2.1	< 0.4	37	12	7.1	< 0.1	23	19
EBH4	0.2	2.8	< 0.4	80	24	7.8	< 0.1	60	34
EBH5	0.2	2.6	< 0.4	82	19	7.4	< 0.1	52	26
EBH6	0.2	2.5	< 0.4	250 (<1) *	44	5.0	< 0.1	230	52
EBH7	0.2	3.3	< 0.4	60	13	6.8	< 0.1	52	34

Table 12: Heavy Metal Detections in soil samples (mg/kg)

NE1295

EBH8	0.2	4.8	< 0.4	110 (<1) *	31	9.3	< 0.1	77	41
EBH9	0.2	2.8	< 0.4	78	16	7.1	< 0.1	55	29
EBH10	0.2	6.1	< 0.4	64	16	8.0	< 0.1	49	35
EBH11	0.2	2.3	< 0.4	110 (<1) *	32	7.6	< 0.1	98	50
EBH12	0.2	2.7	< 0.4	130 (<1) *	30	6.3	< 0.1	96	39

Note- Chromium is total chromium and includes trivalent and hexavalent chromium.

*Hexavalent Chromium

Table 13: Statistical analysis of Heavy Metal Detections in Soil samples (mg/kg)

	As	Cd	Total Cr	Cu	Pb	Hg	Ni	Zn
Samples count ¹	36	36	36	36	36	36	36	36
Minimum	2.1	1.6	28	11	5.0	-	23	19
Maximum	12	1.6	250** (<1) *	82	67	-	130	1200
Average	4.52	1.60	106.2	26.1	13.0	-	74.3	97.8
Standard Deviation	2.04	-	50.2	13.7	12.0	-	43.3	224.5
95% Confidence	0.69	-	17	4.62	4.06	-	14.66	75.96
NEPM 2013 HIL	100	20	100*	6000	300	40	400	7400
NEPM 2013 EIL	100		499**	190	1107		211	421
No. of HIL Exceedance	0	0	0	0	0	0	0	0

* Note: Hexavalent Chromium ** Note: Trivalent Chromium

¹ Note: Duplicate sample is excluded in sample count.

Total Chromium concentrations initially appeared to have exceeded the HIL A Criteria in sixteen (16) samples, additional analysis was required. Following the additional analysis for chromium (VI), Cr (VI) concentrations were reported to be below the Limits of Reporting (LOR). All chromium (III) concentrations were within the EIL Criteria.

Therefore, all detected concentrations of heavy metals were found to be within the Site Assessment Criteria (HIL A and EIL).

10.2.1 Organochlorine Pesticides / Organophosphorus Pesticides (OCP/OPP)

A total of eleven (11) samples were analysed for a range of Organochlorine and Organophosphorus pesticides. Table 14 shows the OCP/OPP detections.

	Sample Depth (m)	DDT+DDE+ DDD	Aldrin and Dieldrin	Endrin	Chlordane Total	Toxaphene	Chlorpyrifos
DI-4	0.5	< 0.05	< 0.05	< 0.05	< 0.1	< 0.5	< 0.2
DI-6	0.1	< 0.05	< 0.05	< 0.05	< 0.1	< 0.5	< 0.2
DI-6-2	0.1	< 0.05	< 0.05	< 0.05	< 0.1	< 0.5	< 0.2
DI-7-1	0.1	< 0.05	< 0.05	< 0.05	< 0.1	< 0.5	< 0.2
DI-7-2	0.2	< 0.05	< 0.05	< 0.05	< 0.1	< 0.5	< 0.2
DI-9	0.5	< 0.05	< 0.05	< 0.05	< 0.1	< 0.5	< 0.2
DI-10-2	0.15	< 0.05	< 0.05	< 0.05	< 0.1	< 0.5	< 0.2
DI-11-1	0.1	< 0.5	< 0.5	< 0.5	< 0.1	< 10	< 0.5
DI-11-2	0.15	< 0.5	< 0.5	< 0.5	< 0.1	< 10	< 0.5
DI-12-1	0.2	< 0.05	< 0.05	< 0.05	< 0.1	< 0.5	< 0.2
DI-13-1	0.2	< 0.05	< 0.05	< 0.05	< 0.1	< 0.5	< 0.2
EBH1	0.4	< 0.05	< 0.05	< 0.05	< 0.1	< 0.5	< 0.2
EBH2	0.2	< 0.05	< 0.05	< 0.05	< 0.1	< 0.5	< 0.2
EBH3	0.2	< 0.05	< 0.05	< 0.05	< 0.1	< 0.5	< 0.2
EBH4	0.2	< 0.05	< 0.05	< 0.05	< 0.1	< 0.5	< 0.2
EBH5	0.2	< 0.05	< 0.05	< 0.05	< 0.1	< 0.5	< 0.2
EBH6	0.2	< 0.05	< 0.05	< 0.05	< 0.1	< 0.5	< 0.2
EBH7	0.2	< 0.05	< 0.05	< 0.05	< 0.1	< 0.5	< 0.2
EBH8	0.2	< 0.05	< 0.05	< 0.05	< 0.1	< 0.5	< 0.2
EBH9	0.2	< 0.05	< 0.05	< 0.05	< 0.1	< 0.5	< 0.2
EBH10	0.2	< 0.05	< 0.05	< 0.05	< 0.1	< 0.5	< 0.2
EBH11	0.2	< 0.05	< 0.05	< 0.05	< 0.1	< 0.5	< 0.2
EBH12	0.2	< 0.05	< 0.05	< 0.05	< 0.1	< 0.5	< 0.2
NEPM 20)13 HIL	240	6	240	50	20	160
No. of HIL B	Exceedance	0	0	0	0	0	0

Table 14: OCP/OPP (Pesticides) Detections in soil samples (mg/kg)

All concentrations of OCP/OPP were found to be below the Limit of Reporting (LOR) and were within the adopted Site Assessment Criteria (SAC).

10.2.2 Polycyclic Aromatic Hydrocarbons (PAH)

A total of twenty-two (22) samples were analysed for a range of PAH. Total PAH detections are shown in Table 15.

	Sample Depth (m)	Total PAH	Benzo(a) Pyrene (Upper Bound)	Naphthalene
DI-1-1	0.1	< 0.5	1.2	< 0.5
DI-2-3	0.1	< 0.5	1.2	< 0.5
DI-3-2	0.15	< 0.5	1.2	< 0.5
DI-4-3	0.1	< 0.5	1.2	< 0.5
DI-7-1	0.1	< 0.5	1.2	< 0.5
DI-9	0.5	< 0.5	1.2	< 0.5
DI-11-1	0.1	< 0.5	1.2	< 0.5
DI-11-2	0.15	< 0.5	1.2	< 0.5
DI-12-1	0.1	< 0.5	1.2	< 0.5
DI-13-1	0.2	< 0.5	1.2	< 0.5
EBH1	0.4	< 0.5	1.2	< 0.5
EBH2	0.2	< 0.5	1.2	< 0.5
EBH3	0.2	< 0.5	1.2	< 0.5
EBH4	0.2	< 0.5	1.2	< 0.5
EBH5	0.2	< 0.5	1.2	< 0.5
EBH6	0.2	< 0.5	1.2	< 0.5
EBH7	0.2	< 0.5	1.2	< 0.5
EBH8	0.2	< 0.5	1.2	< 0.5
EBH9	0.2	< 0.5	1.2	< 0.5
EBH10	0.2	< 0.5	1.2	< 0.5
EBH11	0.2	< 0.5	1.2	< 0.5
EBH12	0.2	< 0.5	1.2	< 0.5
NEPN	A 2013	300	3	170
No of NEPM	I Exceedance	0	0	0

Table 15: Total PAH Detections in soil samples (mg/kg)

All concentrations of PAH were found to be below the Limit of Reporting (LOR) and were within the adopted Site Assessment Criteria (SAC).

10.2.3 Total Recoverable Hydrocarbons (TRH) - 2013 NEPM Fractions

A total of twenty-five (25) samples were analysed for TRH. TRH detections are presented in Table 16.

Sample ID	Sample Depth (m)	F1: C6-C10	F2: C10-C16	F3: C16-C34	F4: C34-C40
DI-2-1	0.15	< 20	< 50	< 100	< 100
DI-3	0.5	< 20	< 50	< 100	< 100
DI-3-3	0.2	< 20	< 50	< 100	< 100
DI-5-1	0.1	< 20	< 50	150	< 100
DI-6	0.1	< 20	< 50	< 100	< 100
DI-7-1	0.1	< 20	< 50	< 100	< 100
DI-8-1	0.1	< 20	< 50	< 100	< 100
DI-9	0.5	< 20	< 50	< 100	< 100
DI-10-1	0.1	< 20	< 50	< 100	< 100
DI-11-1	0.1	< 20	100	1200	200
DI-11-2	0.15	< 20	120	1400	340
DI-12-1	0.2	< 20	< 50	220	< 100
DI-13-1	0.2	< 20	< 50	220	< 100
EBH1	0.4	< 20	< 50	< 100	< 100
EBH2	0.2	< 20	< 50	< 100	< 100
EBH3	0.2	< 20	< 50	< 100	< 100
EBH4	0.2	< 20	< 50	< 100	< 100
EBH5	0.2	< 20	< 50	< 100	< 100
EBH6	0.2	< 20	< 50	< 100	< 100
EBH7	0.2	< 20	< 50	< 100	< 100
EBH8	0.2	< 20	< 50	< 100	< 100
EBH9	0.2	< 20	< 50	< 100	< 100
EBH10	0.2	< 20	< 50	< 100	< 100
EBH11	0.2	< 20	< 50	< 100	< 100
EBH12	0.2	< 20	< 50	< 100	< 100
	HSL	50	280	NL	NL
	ESL	180	120	1300	5600
	ML	800 0	1000	3500	10000
No of HSL/ES	No of HSL/ESL/ML Exceedance		0	1	0

Table 16: Total TRH Detections in soil samples (mg/kg)

All samples analysed, are found to have concentrations of TRH within the adopted Site Criteria (HSL, ESL and ML). With the exception of Sample# Di-11-2 where the concentration of TRH F3: C16-C34 exceeded the Ecological Screening Level (ESL), the Management Level was not exceeded.

Given that the sample was sampled in a tree lined area and there was no visual evidence or odours of hydrocarbon contamination within the soil such as oil staining. Geotesta Pty Ltd is of the opinion, the hydrocarbons were natural occurring, often associated with oils from eucalyptus trees and dropped leaves.

10.2.4 Benzene, Toluene, Ethyl Benzene and Xylene (BTEX) - 2013 NEPM Fractions

A total of nineteen (19) samples were analysed for BTEX. BTEX detections are presented in Table 17.

	Sample Depth (m)	Benzene	Toluene	Ethylbenzene	Xylene
DI-5	0.1	< 0.1	< 0.1	< 0.1	< 0.3
DI-7-1	0.1	< 0.1	< 0.1	< 0.1	< 0.3
DI-9	0.5	< 0.1	< 0.1	< 0.1	< 0.3
DI-11-1	0.1	< 0.1	< 0.1	< 0.1	< 0.3
DI-11-2	0.15	< 0.1	< 0.1	< 0.1	< 0.3
DI-12-1	0.2	< 0.1	< 0.1	< 0.1	< 0.3
DI-13-1	0.2	< 0.1	< 0.1	< 0.1	< 0.3
EBH1	0.4	< 0.1	< 0.1	< 0.1	< 0.3
EBH2	0.2	< 0.1	< 0.1	< 0.1	< 0.3
EBH3	0.2	< 0.1	< 0.1	< 0.1	< 0.3
EBH4	0.2	< 0.1	< 0.1	< 0.1	< 0.3
EBH5	0.2	< 0.1	< 0.1	< 0.1	< 0.3
EBH6	0.2	< 0.1	< 0.1	< 0.1	< 0.3
EBH7	0.2	< 0.1	< 0.1	< 0.1	< 0.3
EBH8	0.2	< 0.1	< 0.1	< 0.1	< 0.3
EBH9	0.2	< 0.1	< 0.1	< 0.1	< 0.3
EBH10	0.2	< 0.1	< 0.1	< 0.1	< 0.3
EBH11	0.2	< 0.1	< 0.1	< 0.1	< 0.3
EBH12	0.2	< 0.1	< 0.1	< 0.1	< 0.3
	HSL	0.7	480	NL	110
	ESL	65	105	125	45
No. of HSL/	ESL Exceedance	0	0	0	0

Table 17: Total BTEX Detections in soil samples (mg/kg)

All samples analysed, are found to have concentrations of BTEX below the LOR and therefore within the adopted Site Criteria (HSL and ESL).

10.2.5 Asbestos

All sample locations were visually assessed for the presence of visible suspected asbestos containing materials (ACM) within surface soils, no suspected ACM were encountered. Within all samples analysed for asbestos, no asbestos was detected above the Reporting Limit.

10.2.6 Swamp/dam water results

Four water samples (W1 for 1/2/22) and (W1-W3 for 12/5/22) of swamp/dam water were sampled and sent to the laboratory for analysis of heavy metals and OCP/OPP. The laboratory results are presented in Tables 18 and 19. The samples were unfiltered and represent the Dam waters.

	Arsenic (As)	Cadmium (Cd)	Chromium (Cr)	Copper (Cu)	Lead (Pb)	Mercury (Hg)	Nickel (Ni)	Zinc (Zn)
W1 1/2/22	0.002	< 0.0002	0.006	0.011	0.002	< 0.0001	0.017	0.01
W1 12/5/22	< 0.001	< 0.0002	0.01	0.005	0.002	< 0.0001	0.011	0.015
W2 12/5/22	< 0.001	< 0.0002	0.007	0.004	0.001	< 0.0001	0.007	0.015
W3 12/5/22	< 0.001	< 0.0002	0.013	0.007	0.003	< 0.0001	0.015	0.02
ANZEC 95% Freshwater	0.024	0.0002	-	0.0014	0.0034	0.0006	0.011	0.008
Exceedances	0	0	0	4	0	0	3	4

Table 18: Heavy Metal Detections in dam water sample (mg/L)

Table 19: OCP/OPP (Pesticides) Detections in dam water sample (mg/L)

	Malathion	Diazinon	DDT	Aldrin+ Dieldrin	Chlordanes
W1	< 0.002	< 0.002	< 0.0002	< 0.0002	< 0.002
W2	< 0.002	< 0.002	< 0.0002	< 0.0002	< 0.002
W3	< 0.002	< 0.002	< 0.0002	< 0.0002	< 0.002
NEPM 2013 GILs	0.07	240	0.004	0.0003	0.002
Exceedances	0	0	0	0	0

Exceedances for copper, nickel and zinc were detected within the water dam samples analysed, all other Heavy Metal concentrations were found to be below the Site Assessment Criteria. All the concentrations of Pesticides detections were found to be below the adopted Site Assessment Criteria and limit of reporting (LOR).

10.3 Evaluation Analytical Quality Assurance

10.3.1 Duplicate Sample

The laboratory quality control measures are assessed based on a duplicate sample which was collected during the field works.

The Relative Percentage Difference (RPD) values between primary/parent sample DI6 and the duplicate sample D6 was calculated to assess the results. A zero RPD means perfect agreement of results between the primary and duplicate sample whilst an RPD above 200% indicates total disagreement in results. Any value >50% RPD will be noted and discussed, as per Standards Australia requirements, with respect to its acceptability for inclusion in the dataset.

An acceptable RPD of 30% was adopted for this assessment, however, in circumstances where one or both of the detected concentrations within the duplicate pair were within five (5) times the LOR, an RPD of 100% was considered acceptable.

The following Table 20 presents the RPD results for the duplicate collected and pairs of results obtained above the laboratory detection limits.

Chemical	DI6	D6	RPD%
Arsenic	4.3	4.2	2.4
Cadmium	< 0.4	< 0.4	-
Chromium	83	78	6.2
Copper	17	21	21.1
Lead	14	11	24
Mercury	< 0.1	< 0.1	-
Nickel	37	38	2.7
Zinc	19	21	10

Table 20: Relative Percentage Difference against DI6 and D6

Adapted from Eurofins Certificate of Analysis 860033-S (Appendix E) 860033-S

The RPD for the duplicate samples analysed by the primary laboratory (Eurofins MGT) were between 2.4 % and 24 %. No results exceeded 50%. RPD values could not be determined for Cadmium and Mercury as they were below the laboratory reporting limits. Based on the laboratory QA/QC and the duplicate results the data is considered suitable for use in this environmental assessment of the site.

The Relative Percentage Difference (RPD) values between primary/parent sample EBH4 and the duplicate sample BD1 was calculated to assess the results.

The following Table 21 presents the RPD results for the duplicate collected and pairs of results obtained above the laboratory detection limits.

Chemical	EBH4	BD1	RPD%
Arsenic	2.8	3.5	22.2
Cadmium	< 0.4	< 0.4	-
Chromium	80	100	22.2
Copper	24	20	18.2
Lead	7.8	5.5	34.6
Mercury	< 0.1	< 0.1	-
Nickel	60	67	11.0
Zinc	34	42	21.1

Table 21: Relative Percentage Difference against EBH4 and BD1

Adapted from Eurofins Certificate of Analysis 889035-S (Appendix E)

The RPD for the duplicate samples analysed by the primary laboratory (Eurofins MGT) were between 11.0 % and 34.6 %. No results exceeded 50%. RPD values could not be determined for Cadmium and Mercury as they were below the laboratory reporting limits. Based on the laboratory QA/QC and the duplicate results the data is considered suitable for use in this environmental assessment of the site.

10.3.2 Trip Spike

The trip spike sample assesses the loss of volatile compounds through field handling and transport procedures. The trip spike is a sand sample spiked with a known concentration of BTEX by the analytical laboratory. The sample is transported to and from the site with the primary samples and is analysed to determine the percentage of BTEX recovered.

Upon analysis, the recovery rates were between 90% and 96% of the known concentration (refer to Table 22). Therefore, the field and transport procedures were considered satisfactory for minimising the potential loss of volatile compounds from the primary samples.

Table	22:	Trip	Spike	Recovery (%)
-------	-----	------	-------	--------------

Sample	Benzene	Toluene	Ethylbenzene	o-Xylene	Total Xylene
Trip Spike (%)	84	84	81	83	82
Assessment Criteria	70 – 130	70 – 130	70 – 130	70 – 130	70 – 130

Adapted from Eurofins Certificate of Analysis 889035-S S (Appendix E)

10.3.1 Trip Blank

The trip blank sample assesses the potential for the primary sample to be affected by external and environmental factors during transport between the site and laboratory. The trip blank sample consists of blank sand which is transported to and from the site and laboratory with the primary samples.

Upon analysis, no concentrations of BTEX were detected (refer to Table 23). As such, there is a minimal potential for cross-contamination to have occurred during the field and trip handling procedures.

Table 23: Trip Blank Sample Results (mg/kg)

Analyte	Trip Blank (mg/L)
Benzene	< 0.1
Toluene	< 0.1
Ethylbenzene	< 0.1
o-Xylene	< 0.1
Total Xylene	< 0.3

Adapted from Eurofins Certificate of Analysis 889035-S (Appendix E)

11. DISCUSSION

11.1 Soil Contamination Summary

The historical review indicated the site has been used for residential purposes since 1964 and vacant land prior to that. During the site investigation it is understood that the site has been using for agriculture purposes, Cattle sheds, Old tractors, and water tanks were observed on site. These may cause potential concern of contamination from heavy metals, OCP/OPP, PAH, TRH, BTEX and Asbestos.

A summary of the lab result is presented as the following:

- Detected concentration of all heavy metals were within the Site Assessment Criteria (SAC).
- Detected concentrations of Organochlorine Pesticides/Organophosphorus Pesticides (OCP/OPP) were below the laboratory reporting limit (LOR) and the Site Assessment Criteria.
- Detected concentrations of PAH and BTEX analytes were below the laboratory reporting limit and therefore within the Site Assessment Criteria
- One exceedance in TRH Fraction F3: C16-34 was detected in Sample DI-11-2, having exceeded the TRH Criteria / ESL (Fine Soil). Regarding the Hydrocarbon exceedance, given that the sample was sampled in a tree lined area and there was no visual evidence or odours of hydrocarbon contamination within the soil such as oil staining. Geotesta Pty Ltd is of the opinion, the hydrocarbons were natural occurring, often associated with oils from eucalyptus trees and dropped leaves.
- All remaining detected concentrations of TRH analytes were below the laboratory reporting limit (LOR) and therefore within the Site Assessment Criteria (SAC).
- Based on laboratory results, no asbestos were detected above the Reporting Limit within the samples analysed. No suspected asbestos containing materials (ACM) were observed on site during the inspection.
- Detected concentrations of copper, nickel and zinc within the water sample exceeded the adopted Site Assessment Criteria (ANZEC 95% Freshwater Guidelines). All remaining heavy metal and OCP/OPP Pesticides screened were within the SAC.

12. CONCLUSIONS AND RECOMMENDATIONS

A Preliminary Site Investigation of 13L and Lot 7 DP223428 Narromine Rd, Dubbo NSW 2830 was undertaken by Geotesta Pty Ltd to investigate the likelihood of the presence of contamination on the site. Based on the assessment undertaken, the following conclusions and recommendations can be made:

- Geotesta Pty Ltd is of the opinion, that the detected TRH Fraction F3: C16-34 at Sample location# DI-11-2 are natural hydrocarbons, associated with oils from eucalyptus trees and dropped leaves. Given that the sample was sampled in a tree lined area and there was no visual evidence or odours of hydrocarbons in the soil such as oil staining.
- Given the heavy metal exceedances (copper, nickel and zinc) within the dam water sampled, dam decommissioning can be performed once the Dam Decommissioning reports have been issued.
- The conducted Preliminary Site Investigation's limited soil sampling and analysis program indicated a **low** risk of soil contamination. It is the opinion of Geotesta Pty Ltd that the site is suitable for the proposed development pending an additional Data Gap Contamination Assessment is undertaken.
- Due to the existence of a data-gap in this investigation, a further assessment post demolition of the existing structures/dwellings is required to address further potential AECs identified previously and to determine if any contamination hotspots exist within the footprint of the existing sheds and dwellings. The Gap Assessment scope must also include the following:
 - A Delineation Assessment is recommended in the vicinity of the TRH Fraction F3: C16-34 concentration elevation at the location of Sample# DI-11-2
 - Any stockpiles and areas under stockpiled materials that were not assessed at the time of the PSI or are new to site, will require sampling as part of the Data Gap Assessment.

DOCUMENT CONTROL

Date	Version	Report Prepared By:	Report Reviewed and issued by:
16 June 2022	Rev (0)	Ngoc Thang Pham	Victor Kirpichnikov
		BEng MSc PhD	MEnv Studies, Bsc (Hons), WHS Cert IV
		Geotechnical Engineer	Senior Environmental Consultant
		Victor Kirpichnikov	
		MEnv Studies, Bsc (Hons),	
		WHS Cert IV	
		Senior Environmental	
		Consultant	

13. **REFERENCES**

NSW Department of Mineral Resources, (1991) Penrith 1:100,000 Geological Sheet 9030.

Bureau of Meteorology (2017), <u>www.bom.gov.au</u>.

EPA NSW, http://www.epa.nsw.gov.au/prclmapp/aboutregister.aspx.

NEPC (1999, amended 2013) National Environmental Protection (Assessment of Site Contamination) Measure (ASC NEPM, 1999 amended 2013).

NSW Department of Environment & Heritage (NSW soil and land information), www.environment.nsw.gov.au.

NSW EPA (2014), Waste Classification Guidelines, Part 1: Classifying waste.

NSW EPA (2020) Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites.

Standards Australia (2005) AS4482.1 2nd Edition: Guide to the Investigation and Sampling of Sites with Potentially Contaminated Soil – Part 1: Non-Volatile and Semi-Volatile Compounds.

NSW DEC (2017), 3rd Ed. Contaminated Sites: Guidelines for the NSW Site Auditor Scheme.

WA DoH (2009) Guidelines for the Assessment, Remediation and Management of Asbestoscontaminated Sites in Western Australia.

State Environmental Planning Policy No 55 (1979), Environmental Planning and Assessment Act 1979.

Standards Australia, 2005. Guide to the sampling and Investigation of Potentially Contaminated Soil, Part 1: Non-volatile and Semi-volatile compounds. AS 4482.1

Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Australian and New Zealand Environment and Conservation Council (2000)

Eurofins Environment Testing Pty Ltd, 01 February 2022, Certificate of Analysis 860033-S, prepared for Geotesta Pty Ltd

Eurofins Environment Testing Pty Ltd, 01 February 2022, Certificate of Analysis 860033-AID, prepared for Geotesta Pty Ltd

Eurofins Environment Testing Pty Ltd, 01 February 2022, Certificate of Analysis 859443-W, prepared for Geotesta Pty Ltd

Eurofins Environment Testing Pty Ltd, 13 May 2022, Certificate of Analysis 889035-S, prepared for Geotesta Pty Ltd

Eurofins Environment Testing Pty Ltd, 13 May 2022, Certificate of Analysis 889035-AID, prepared for Geotesta Pty Ltd

Eurofins Environment Testing Pty Ltd, 13 May 2022, Certificate of Analysis 888819-W, prepared for Geotesta Pty Ltd

Eurofins Environment Testing Pty Ltd, 14 June 2022, Certificate of Analysis 897298-S, prepared for Geotesta Pty Ltd

Lotsearch, Jannali Road, Dubbo, NSW 2830, Reference: LS032012 EP, 11 May 2022

Information about this report

The report contains the results of a contamination investigation conducted for a specific purpose and client. The results should not be used by other parties, or for other purposes, as they may contain neither adequate nor appropriate information. In particular, the investigation does not cover contamination issues unless specifically required to do so by the client.

Test Hole Logging

The information on the test hole logs (boreholes, test pits, exposures etc.) is based on a visual and tactile assessment, except at the discrete locations where test information is available (field and/or laboratory results). The test hole logs include both factual data and inferred information.

Groundwater

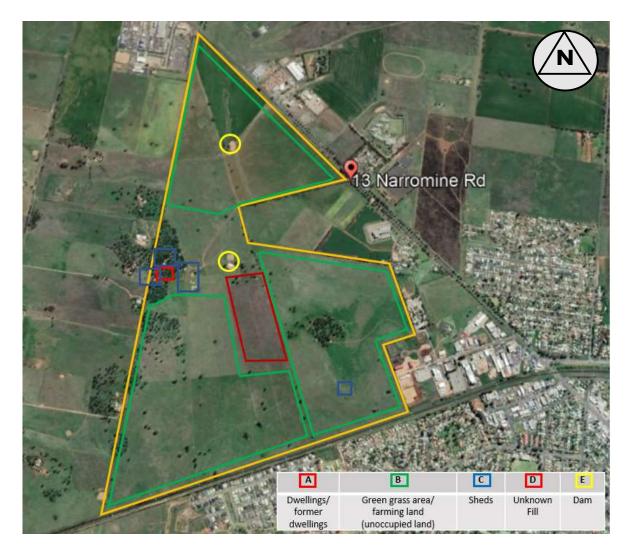
Unless otherwise indicated, the water levels presented on the test hole logs are the levels of free water or seepage in the test hole recorded at the given time of measuring. The actual groundwater level may differ from this recorded level depending on material permeability (i.e. depending on response time of the measuring instrument). Further, variations of this level could occur with time due to such effects as seasonal, environmental and tidal fluctuations or construction activities. Confirmation of groundwater levels, phreatic surfaces or piezometric pressures can only be made by appropriate instrumentation techniques and monitoring programmes.

Interpretation of Results

The discussion or recommendations contained within this report normally are based on a site evaluation from discrete test hole data. Generalized, idealized or inferred subsurface conditions (including any geotechnical cross-sections) have been assumed or prepared by interpolation and/or extrapolation of these data. As such these conditions are an interpretation and must be considered as a guide only.

Change in Conditions

Local variations or anomalies in the generalized ground conditions do occur in the natural environment, particularly between discrete test hole locations. Additionally, certain design or construction procedures may have been assumed in assessing the soil-structure interaction behaviour of the site. Furthermore, conditions may change at the site from those encountered at the time of the geotechnical investigation through construction activities and constantly changing natural forces.


Any change in design, in construction methods, or in ground conditions as noted during construction, from those assumed or reported should be referred to GEOTESTA for appropriate assessment and comment.

Environmental Verification

Verification of the environmental/contamination assumptions and/or model is an integral part of the design process-investigation, construction verification, and performance monitoring. Variability is a feature of the natural environment and, in many instances, verification of soil or rock quality, or foundation levels, is required. There may be a requirement to extend foundation depths, to modify a foundation system or to conduct monitoring as a result of this natural variability. Allowance for verification by geotechnical personnel accordingly should be recognized and programmed during construction.

Reproduction of Reports

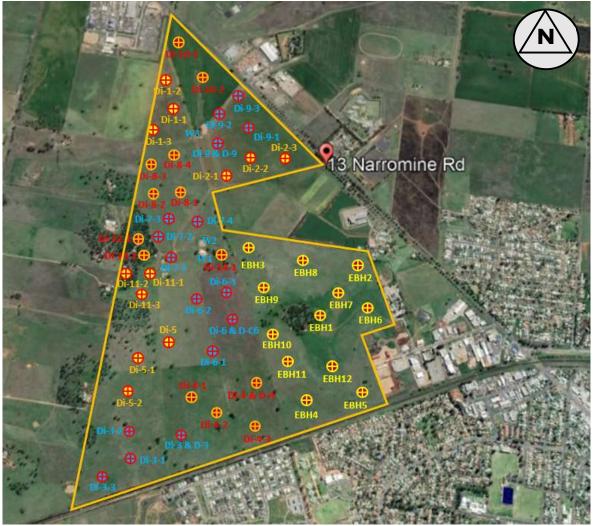
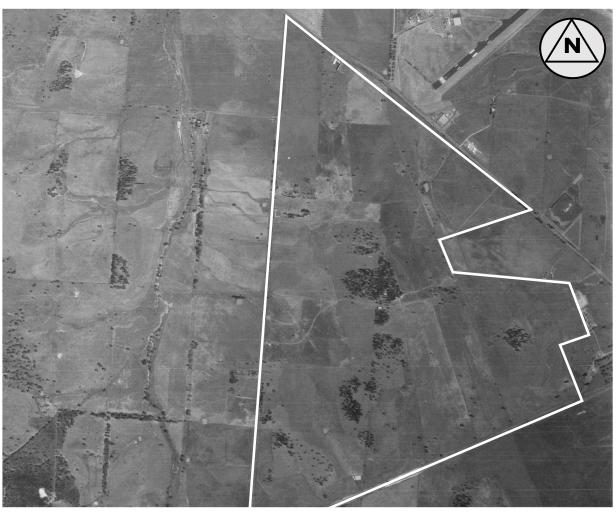

Where it is desired to reproduce, the information contained in our contamination report, or other technical information, for the inclusion in contract documents or engineering specification of the subject development, such reproductions should include at least all of the relevant test hole and test data, together with the appropriate standard description sheets and remarks made in the written report of a factual or descriptive nature. Reports are the subject of copyright and shall not be reproduced either totally or in part without the express permission of Geotesta.

Figure 3: Areas of Environmental Concerns

PSI REPORT - 13L Narromine Road and Jannali Road, Dubbo, NSW 2830

NE1295


Figure 4: Soil Samples Location

Appendix A Aerial Photographs



Aerial Photo 1971

Aerial Photo 1974

Aerial Photo 1995

Aerial Photo 2021

Appendix B

Planning Certificate Under Section 10.7

Certificate No:436Applicant Ref:NE1167Receipt No:81057263

24/02/2022

Geotesta Pty Ltd 7 Business Park Drive NOTTING HILL VIC 3168

PLANNING CERTIFICATE

Issued under Section 10.7 (2) of the Environmental Planning and Assessment Act 1979

Parcel No:15197Property description:Lot: 22 DP: 1038924, 13L Narromine Road DUBBO

SECTION 10.7 (2) PRESCRIBED MATTERS UNDER SCHEDULE 4 OF THE ENVIRONMENTAL PLANNING AND ASSESSMENT REGULATION 2000

At the date of the Certificate, the following LEPs, DCPs and SEPPs apply to the subject land:

Local Environmental Plan (LEP): Dubbo Local Environmental Plan 2011, applies to the subject land.

State Environmental Planning Polices (SEPP):

State Environmental Planning Policy No 33 - Hazardous and Offensive Development, applies to the State.

State Environmental Planning Policy No 50 - Canal Estate Development, applies to the State.

State Environmental Planning Policy No 55 - Remediation of Land, applies to the State.

State Environmental Planning Policy No 64 - Advertising and Signage, applies to the State.

State Environmental Planning Policy No 65 - Design Quality of Residential Flat Development, applies to the State.

State Environmental Planning Policy (State Significant Precincts) 2005, applies to the State.

PO Box 81 Dubbo NSW 2830 T [02] 6801 4000 F [02] 6801 4259 E council@dubbo.nsw.gov.au Civic Administration Building Church St Dubbo NSW 2830 W dubbo.nsw.gov.au

State Environmental Planning Policy (Mining, Petroleum Production and Extractive Industries) 2007, applies to the State.

State Environmental Planning Policy (Building Sustainability Index: BASIX) 2004, applies to the State.

State Environmental Planning Policy (Infrastructure) 2007, applies to the State.

State Environmental Planning Policy (Exempt and Complying Development Codes) 2008, applies to the State.

State Environmental Planning Policy (State and Regional Development) 2011, applies to the State.

State Environmental Planning Policy (Educational Establishments and Child Care Facilities) 2017, applies to the State.

State Environmental Planning Policy (Vegetation in Non-Rural Areas) 2017, applies to the State.

State Environmental Planning Policy (Primary Production and Rural Development) 2019, applies to the State.

State Environmental Planning Policy (Concurrences and Consents) 2018, applies to the State.

State Environmental Planning Policy (Housing) 2021, applies to the State.

Draft Local Environmental Planning Instrument:

The Planning Proposal for the draft Dubbo Regional Local Environmental Plan 2021 was on public exhibition from 2 June 2021 until 30 June 2021. The intent of the Planning Proposal is to consolidate and rationalise the existing provisions of the Dubbo LEP 2011 and Wellington LEP 2012 to create a new consolidate LEP for Dubbo Region.

Zone RU2 Rural Landscape

- (1) Objectives of zone
 - * To encourage sustainable primary industry production by maintaining and enhancing the natural resource base.
 - * To maintain the rural landscape character of the land.
 - To provide for a range of compatible land uses, including extensive agriculture.
- (2) Permitted without consent Environmental protection works; Extensive agriculture; Home-based child care; Home occupations; Roads.
- (3) Permitted with consent

Agricultural produce industries; Agriculture; Animal boarding or training establishments; Aquaculture; Boat launching ramps; Camping grounds; Caravan parks; Cellar door premises; Centre-based child care facilities; Community facilities; Correctional centres; Depots; Dwelling houses; Eco-tourist facilities; Educational establishments; Environmental facilities; Extractive industries; Farm buildings; Forestry; Group homes; Health consulting rooms; Highway service centres; Home businesses; Home industries; Industrial training facilities; Information and education facilities; Jetties; Mooring pens; Moorings; Open cut mining; Plant nurseries; Recreation areas; Recreation facilities (outdoor); Research stations; Respite day care centres; Secondary dwellings; Sewerage systems; Signage; Tourist and visitor accommodation; Truck depots; Water recreation structures; Water supply systems; Wharf or boating facilities.

(4) Prohibited

Advertising structures; Hotel or motel accommodation; Intensive livestock agriculture; Serviced apartments; Any other development not specified in item 2 or 3.

Zone R2 Low Density Residential

- (1) Objectives of zone
 - * To provide for the housing needs of the community within a low density residential environment.
 - * To enable other land uses that provide facilities or services to meet the day to day needs of residents.
 - * To ensure development is consistent with the character of the immediate locality.
 - * To encourage low density housing within a landscaped setting on the fringe of the Dubbo urban area.
- (2) Permitted without consent Environmental protection works; Home-based child care; Home occupations; Roads.

(3) Permitted with consent

Bed and breakfast accommodation; Boarding houses; Centre-based child care facilities; Community facilities; Dwelling houses; Educational establishments; Environmental facilities; Exhibition homes; Exhibition villages; Group homes; Health consulting rooms; Home businesses; Home industries; Information and education facilities; Medical centres; Neighbourhood shops; Oyster aquaculture; Places of public worship; Pond-based aquaculture; Recreation areas; Residential accommodation; Respite day care centres; Signage; Tank-based aquaculture; Water reticulation systems.

(4) Prohibited

Advertising structures; Attached dwellings; Hostels; Multi dwelling housing; Residential flat buildings; Rural workers' dwellings; Shop top housing; Any other development not specified in item 2 or 3.

Zone R5 Large Lot Residential

- (1) Objectives of zone
 - * To provide residential housing in a rural setting while preserving, and minimising impacts on, environmentally sensitive locations and scenic quality.
 - * To ensure that large residential lots do not hinder the proper and orderly development of urban areas in the future.
 - * To ensure that development in the area does not unreasonably increase the demand for public services or public facilities.
 - * To minimise conflict between land uses within this zone and land uses within adjoining zones.
- (2) Permitted without consent Environmental protection works; Extensive agriculture; Home-based child care; Home occupations; Roads.
- (3) Permitted with consent

Agricultural produce industries; Dairies (pasture-based); Dwelling houses; Dual occupancies; Home industries; Horticulture; Neighbourhood shops; Oyster aquaculture; Plant nurseries; Pond-based aquaculture; Tank-based aquaculture; Water reticulation systems; Any other development not specified in item 2 or 4.

(4) Prohibited

Advertising structures; Agriculture; Air transport facilities; Airstrips; Amusement centres; Animal boarding or training establishments; Attached dwellings; Boarding houses; Boat building and repair facilities; Boat sheds; Camping grounds; Car parks; Caravan parks; Cemeteries; Charter and tourism boating facilities; Commercial premises; Correctional centres; Crematoria; Depots; Dual occupancies (detached); Eco-tourist facilities; Entertainment facilities; Extractive industries; Farm stay accommodation; Flood mitigation works; Freight transport facilities; Function centres; Heavy industrial storage premises; Helipads; Highway service centres; Home occupations (sex services); Hostels; Hotel or motel accommodation; Industrial retail outlets; Industrial training facilities; Industries; Marinas; Mortuaries; Multi dwelling housing; Open cut mining; Passenger transport facilities; Public administration buildings; Recreation facilities (indoor); Recreation facilities (major); Recreation facilities (outdoor); Registered clubs; Research stations; Residential flat buildings; Restricted premises; Rural industries; Rural workers' dwellings; Semi-detached dwellings; Seniors housing; Service stations; Serviced apartments; Sewerage systems; Sex services premises; Shop top housing; Storage premises; Transport depots; Truck depots; Vehicle body repair workshops; Vehicle repair stations; Warehouse or distribution centres; Waste or resource management facilities; Water supply systems; Wholesale supplies.

Zone IN2 Light Industrial

- (1) Objectives of zone
 - To provide a wide range of light industrial, warehouse and related land uses.

- * To encourage employment opportunities and to support the viability of centres.
- * To minimise any adverse effect of industry on other land uses.
- * To enable other land uses that provide facilities or services to meet the day to day needs of workers in the area.
- * To support and protect industrial land for industrial uses.
- * To recognise the Depot Road and McKenzie Street industrial area as providing start up and transport related development opportunities.
- (2) Permitted without consent Environmental protection works; Roads
- (3) Permitted with consent

Agricultural produce industries; Depots; Funeral homes; Garden centres; Hardware and building supplies; Health consulting rooms; Industrial training facilities; Landscaping material supplies; Light industries; Liquid fuel depots; Medical centres; Neighbourhood shops; Oyster aquaculture; Places of public worship: Plant nurseries; Rural supplies; Take away food and drink premises; Tank-based aquaculture; Timber yards; Vehicle sales or hire premises; Warehouse or distribution centres; Waste or resource transfer stations; Water reticulation systems; Any other development not specified in item 2 or 4.

(4) Prohibited

Advertising structures: Agriculture; Air transport facilities; Airstrips; Amusement centres; Animal boarding or training establishments: Boat launching ramps; Boat sheds; Camping grounds; Caravan parks; Cemeteries; Centre-based child care facilities; Charter and tourism boating facilities; Commercial premises; Correctional centres; Eco-tourist facilities; Entertainment facilities; Exhibition homes; Exhibition villages; Farm buildings; Flood mitigation works; Forestry; Function centres; Health services facilities; Heavy industrial storage premises; Helipads; Home-based child care; Home businesses; Home occupations; Home occupations (sex services); Industries; Jetties; Marinas; Mooring pens; Moorings; Pond-based aquaculture; Public administration buildings; Recreation facilities (major); Recreation facilities (outdoor); Registered clubs; Research stations; Residential accommodation; Respite day care centres; Restricted premises; Rural industries; Sewerage systems; Sex services premises; Tourist and visitor accommodation; Waste or resource management facilities; Water recreation structures; Water supply systems; Wharf or boating facilities.

Draft Development Standards – Dwelling House:

Land Zoned RU2 Rural Landscape

The minimum subdivision lot size for the subject property for the purpose of a dwelling is 100 hectares.

Land Zoned R5 Large Lot Residential

Land Zoned R2 Low Density Residential

There are no development standards pursuant to the Dubbo Regional Local Environmental Plan 2021 that fix minimum land dimensions for the erection of a dwelling house on the subject land, noting that dwellings are 'prohibited' in the zone.

Land Zoned IN2 Light Industrial

There are no development standards pursuant to the Dubbo Regional Local Environmental Plan 2021 that set minimum allotment sizes for the erection of a dwelling house on the subject land, noting that dwelling houses are 'prohibited' in the subject zone.

Land Zoned RU2 Rural Landscape

4.2C Erection of dwelling houses on land in certain rural and environmental protection zones

- (1) The objectives of this clause are as follows:
 - (a) to minimise unplanned rural residential development,
 - (b) to enable the replacement of lawfully erected dwelling houses in certain rural and environmental protection zones.
- (2) This clause applies to:
 - (a) for the erection of a dwelling house—land in Zone RU1 Primary Production, Zone RU2 Rural Landscape, Zone RU4 Primary Production Small Lots or Zone C3 Environmental Management, or
 - (b) for the erection of a dual occupancy land in Zone RU1 Primary Production
- (3) Development consent must not be granted for the erection of a dwelling house or a dual occupancy on land, and on which no dwelling house or dual occupancy has been erected, unless the land:
 - (a) is a lot that is at least the minimum lot size shown on the Lot Size Map in relation to that land, or
 - (b) is a lot created under an environmental planning instrument before this Plan commenced and on which the erection of a dwelling house or dual occupancy was permissible immediately before that commencement, or
 - (c) is a lot resulting from a subdivision for which development consent (or equivalent) was granted under an environmental planning instrument before this Plan commenced and on which the erection of a dwelling house or dual occupancy would have been permissible if the plan of subdivision had been registered before that commencement,or
 - (d) is an existing holding, or
 - (e) would have been a lot or a holding referred to in paragraph (a), (b), (c) or (d) had it not been affected by:
 - (i) a minor realignment of its boundaries that did not create an additional lot, or
 - (ii) a subdivision creating or widening a public road or public reserve or for another public purpose.

Note - A dwelling cannot be erected on a lot created under clause 9 of State Environmental Planning Policy (Rural Lands) 2008 or clause 4.2.

- (4) Development consent may be granted for the erection of a dwelling house or dual occupancy on land to which this clause applies if there is a lawfully erected dwelling house or dual occupancy on the land and the dwelling house or dual occupancy to be erected is intended only to replace the existing dwelling house or dual occupancy.
- (5) In this clause:

Existing Holding means land that:

- (a) was a holding on 26 June 1987,
- (b) was located within the former Wellington Local Government Area prior to 12 May 2016, and
- (c) is a holding at the time the application for development consent referred to in subclause (3) is lodged, whether or not there has been a change in the ownership of the holding since 26 June 1987, and includes any other land adjoining that land acquired by the owner since 26 June 1987.

Holding means all adjoining land, even if separated by a road or railway, held by the same person or persons.

Note - The owner in whose ownership all the land is at the time the application is lodged need not be the same person as the owner in whose ownership all the land was on the stated date.

Draft Critical habitat:

The land does not include or comprise 'critical habitat' under Dubbo Regional Local Environment Plan 2021.

Draft Conservation area:

The land is not in a conservation area under Dubbo Regional Local Environment Plan 2021.

Draft Heritage:

A heritage item is not situated on the land under Dubbo Regional Local Environment Plan 2021.

Development Control Plan (DCP):

Dubbo Development Control Plan 2013, applies to the subject land.

The subject land is zoned:

Zone IN2 Light Industrial

- (1) Objectives of zone
 - * To provide a wide range of light industrial, warehouse and related land uses.
 - * To encourage employment opportunities and to support the viability of centres.
 - * To minimise any adverse effect of industry on other land uses.

- * To enable other land uses that provide facilities or services to meet the day to day needs of workers in the area.
- * To support and protect industrial land for industrial uses.
- * To recognise the Depot Road and McKenzie Street industrial area as providing start up and transport related development opportunities.
- (2) Permitted without consent Environmental protection works; Roads
- (3) Permitted with consent

Agricultural produce industries; Depots; Funeral homes; Garden centres; Hardware and building supplies; Health consulting rooms; Industrial training facilities; Landscaping material supplies; Light industries; Liquid fuel depots; Medical centres; Neighbourhood shops; Oyster aquaculture; Places of public worship; Plant nurseries; Rural supplies; Take away food and drink premises; Tank-based aquaculture; Timber yards; Vehicle sales or hire premises; Warehouse or distribution centres; Waste or resource transfer stations; Water reticulation systems; Any other development not specified in item 2 or 4.

(4) Prohibited

Advertising structures; Agriculture; Air transport facilities; Airstrips; Amusement centres; Animal boarding or training establishments; Boat launching ramps; Boat sheds; Camping grounds; Caravan parks; Cemeteries; Centre-based child care facilities; Charter and tourism boating facilities; Commercial premises; Correctional centres; Eco-tourist facilities; Entertainment facilities; Exhibition homes; Exhibition villages; Farm buildings; Flood mitigation works; Forestry: Function centres; Health services facilities; Heavy industrial storage premises; Helipads; Home-based child care; Home businesses; Home occupations; Home occupations (sex services); Industries; Jetties; Marinas; Mooring pens; Moorings; Pond-based aquaculture; Public administration buildings; Recreation facilities (major); Recreation facilities (outdoor); Registered clubs; Research stations; Residential accommodation; Respite day care centres; Restricted premises; Rural industries; Sewerage systems; Sex services premises; Tourist and visitor accommodation; Waste or resource management facilities; Water recreation structures; Water supply systems; Wharf or boating facilities.

Zone RU2 Rural Landscape

- (1) Objectives of zone
 - To encourage sustainable primary industry production by maintaining and enhancing the natural resource base.
 - * To maintain the rural landscape character of the land.
 - * To provide for a range of compatible land uses, including extensive agriculture.
- (2) Permitted without consent Environmental protection works; Extensive agriculture; Home-based child care; Home occupations; Roads.

(3) Permitted with consent

Agricultural produce industries; Agriculture; Animal boarding or training establishments; Aquaculture; Boat launching ramps; Camping grounds; Caravan parks; Cellar door premises; Centre-based child care facilities; Community facilities; Correctional centres; Depots; Dwelling houses; Eco-tourist facilities; Educational establishments; Environmental facilities; Extractive industries; Farm buildings; Forestry; Group homes; Health consulting rooms; Highway service centres; Home businesses; Home industries; Industrial training facilities; Information and education facilities; Jetties; Mooring pens; Moorings; Open cut mining; Plant nurseries; Recreation areas; Recreation facilities (outdoor); Research stations; Respite day care centres; Secondary dwellings; Sewerage systems; Signage; Tourist and visitor accommodation; Truck depots; Water recreation structures; Water supply systems; Wharf or boating facilities.

(4) Prohibited

Advertising structures; Hotel or motel accommodation; Intensive livestock agriculture; Serviced apartments; Any other development not specified in item 2 or 3.

Zone R2 Low Density Residential

- (1) Objectives of zone
 - * To provide for the housing needs of the community within a low density residential environment.
 - * To enable other land uses that provide facilities or services to meet the day to day needs of residents.
 - * To ensure development is consistent with the character of the immediate locality.
 - * To encourage low density housing within a landscaped setting on the fringe of the Dubbo urban area.
- (2) Permitted without consent Environmental protection works; Home-based child care; Home occupations; Roads.
- (3) Permitted with consent

Bed and breakfast accommodation; Boarding houses; Centre-based child care facilities; Community facilities; Dwelling houses; Educational establishments; Environmental facilities; Exhibition homes; Exhibition villages; Group homes; Health consulting rooms; Home businesses; Home industries; Information and education facilities; Medical centres; Neighbourhood shops; Oyster aquaculture; Places of public worship; Pond-based aquaculture; Recreation areas; Residential accommodation; Respite day care centres; Signage; Tank-based aquaculture; Water reticulation systems.

(4) Prohibited

Advertising structures; Attached dwellings; Hostels; Multi dwelling housing; Residential flat buildings; Rural workers' dwellings; Shop top housing; Any other development not specified in item 2 or 3.

Zone R5 Large Lot Residential

- (1) Objectives of zone
 - * To provide residential housing in a rural setting while preserving, and minimising impacts on, environmentally sensitive locations and scenic quality.
 - * To ensure that large residential lots do not hinder the proper and orderly development of urban areas in the future.
 - * To ensure that development in the area does not unreasonably increase the demand for public services or public facilities.
 - * To minimise conflict between land uses within this zone and land uses within adjoining zones.
- (2) Permitted without consent Environmental protection works; Extensive agriculture; Home-based child care; Home occupations; Roads.
- (3) Permitted with consent

Agricultural produce industries; Dairies (pasture-based); Dwelling houses; Home industries; Horticulture; Neighbourhood shops; Oyster aquaculture; Plant nurseries; Pond-based aquaculture; Tank-based aquaculture; Water reticulation systems; Any other development not specified in item 2 or 4.

(4) Prohibited

Advertising structures; Agriculture; Air transport facilities; Airstrips; Amusement centres; Animal boarding or training establishments; Attached dwellings; Boarding houses; Boat building and repair facilities; Boat sheds; Camping grounds; Car parks; Caravan parks; Cemeteries; Charter and tourism boating facilities; Commercial premises; Correctional centres; Crematoria; Depots; Dual occupancies; Eco-tourist facilities; Entertainment facilities; Extractive industries; Farm stay accommodation; Flood mitigation works; Freight transport facilities; Function centres; Heavy industrial storage premises; Helipads; Highway service centres; Home occupations (sex services); Hostels; Hotel or motel accommodation; Industrial retail outlets; Industrial training facilities; Industries; Marinas; Mortuaries; Multi dwelling housing; Open cut mining; Passenger transport facilities; Public administration buildings; Recreation facilities (indoor); Recreation facilities (major); Recreation facilities (outdoor); Registered clubs; Research stations; Residential flat buildings; Restricted premises; Rural industries; Rural workers' dwellings; Semi-detached dwellings; Seniors housing; Service stations; Serviced apartments; Sewerage systems; Sex services premises; Shop top housing; Storage premises; Transport depots; Truck depots; Vehicle body repair workshops; Vehicle repair stations; Warehouse or distribution centres; Waste or resource management facilities; Water supply systems; Wholesale supplies.

Notwithstanding the above land use permissibility information indicating development 'permitted without consent'; development 'permitted with consent'; and development

'prohibited', the Dubbo Local Environmental Plan 2011 provides in some circumstances additional use provisions and other relevant land use permissibility/prohibition provisions.

It is recommended that consultation of the Dubbo Local Environmental Plan 2011 be undertaken to ascertain precisely the types of land uses permissible or prohibited on the land the subject of this Certificate.

Development Standards – Dwelling House:

Land Zoned RU2 Rural Landscape

The minimum subdivision lot size for the subject property for the purpose of a dwelling is 100 hectares.

Land Zoned R5 Large Lot Residential

Land Zoned R2 Low Density Residential

There are no development standards pursuant to the Dubbo Local Environmental Plan 2011 that fix minimum land dimensions for the erection of a dwelling house on the subject land.

Land Zoned RU2 Rural Landscape

4.2C Erection of dwelling houses on land in certain rural and environmental protection zones(1) The objectives of this clause are as follows

- (a) to minimise unplanned rural residential development,
 - (b) to enable the replacement of lawfully-erected dwelling houses in rural and environmental protection zones.
 - (2) This clause applies to land in the following zones:
 - (a) RU1 Primary Production,
 - (b) RU2 Rural Landscape,
 - (c) RU4 Primary Production Small Lots,
 - (d) E3 Environmental Management.
- (3) Development consent must not be granted for the erection of a dwelling house on land in a zone to which this clause applies, and on which no dwelling house has been erected, unless the land is:
 - (a) a lot that is at least the minimum lot size specified for that land by the Lot Size Map, or
 - (b) a lot created before this Plan commenced and on which the erection of a dwelling house was permissible immediately before that commencement, or
 - (c) a lot resulting from a subdivision for which development consent (or equivalent) was granted before this Plan commenced and on which the erection of a dwelling house would have been permissible if the plan of subdivision had been registered before that commencement.

Note. A dwelling cannot be erected on a lot created under clause 9 of State Environmental Planning Policy (Rural Lands), 2008 or clause 4.2.

(4) Despite subclause (3), development consent may be granted for the erection of a

dwelling house on land to which this clause applies if:

- (a) there is a lawfully-erected dwelling house on the land and the dwelling house to be erected is intended only to replace the existing dwelling house, or
- (b) the land would have been a lot referred to in subclause (3) had it not been affected by:
 - (i) a minor realignment of its boundaries that did not create an additional lot, or
 - (ii) a subdivision creating or widening a public road or public reserve or for another public purpose.

Land Zoned IN2 Light Industrial

There are no development standards pursuant to the Dubbo Local Environmental Plan 2011 that set minimum allotment sizes for the erection of a dwelling house on the subject land, noting that dwelling houses are 'prohibited' in the subject zone.

Critical habitat:

The land does not include or comprise 'critical habitat' under Dubbo Local Environment Plan 2011 or Wellington Local Environmental Plan 2012.

Conservation area:

The land is not in a conservation area under Dubbo Local Environment Plan 2011 or Wellington Local Environmental Plan 2012.

Heritage:

A heritage item is not situated on the land under Dubbo Local Environment Plan 2011 or Wellington Local Environmental Plan 2012.

Complying development:

- (1) The extent to which the land is land on which complying development may be carried out under each of the codes for complying development because of the provisions of clauses 1.17A (1) (c) to (e), (2), (3), and (4), 1.18 (1) (c3) and 1.19 of State Environmental Planning Policy (Exempt and Complying Development Codes, 2008.
- (2) The extent to which complying development may not be carried out on the land because of the provision of clauses 1.17A (1) (c) to (e), (2), (3) and (4), 1.18 (1) (c3) and 1.19 of the Policy and the reasons why it may not be carried out under those clauses.
- (3) If the council does not have sufficient information to ascertain the extent to which complying development may or may not be carried out on the land, a statement that a restriction applies to the land, but it may not apply to all of the land, and that council does not have sufficient information to ascertain the extent to which complying development may or may not be carried out on the land.

Part 3B. Low Rise Medium Density Housing Code:

No - other than Complying Development carried out on the part of the lot which is not within the 25 ANEF contour or higher. Within the 25 ANEF contour or higher only ancillary development, the alteration of or an addition to ancillary development or the alteration of a dwelling house is Complying Development.

No - does not apply to the land. The subject land is identified as High Biodiversity on Council's Natural Resource - Biodiversity Map.

Part 3C. Greenfield Housing Code:

No other than Complying Development carried out on the part of the lot which is not within the 25 ANEF contour or higher. Within the 25 ANEF contour or higher only ancillary development, the alteration of or an addition to ancillary development or the alteration of a dwelling house is Complying Development.

No - does not apply to the land. The subject land is identified as High Biodiversity on Council's Natural Resource - Biodiversity Map.

Part 3D. Inland Code:

No - other than Complying Development carried out on the part of the lot which is not within the 25 ANEF contour or higher. Within the 25 ANEF contour or higher only ancillary development, the alteration of or an addition to ancillary development or the alteration of a dwelling house is Complying Development.

No - does not apply to the land. The subject land is identified as High Biodiversity on Council's Natural Resource - Biodiversity Map.

Part 4. Housing Alterations Code:

No - does not apply to the land. The subject land is identified as High Biodiversity on Council's Natural Resource - Biodiversity Map.

Part 4A. General Development Code:

No - does not apply to the land. The subject land is identified as High Biodiversity on Council's Natural Resource - Biodiversity Map.

Part 5. Industrial and Business Alterations Code:

No - does not apply to the land. The subject land is identified as High Biodiversity on Council's Natural Resource - Biodiversity Map.

Part 5A. and 5B. Industrial and Business Buildings Code and the Container Recycling Facilities Code:

No - does not apply to the land. The subject land is identified as High Biodiversity on Council's Natural Resource - Biodiversity Map.

Part 6. Subdivision Code:

No - does not apply to the land. The subject land is identified as High Biodiversity on Council's Natural Resource - Biodiversity Map.

Part 7. Demolition Code:

No - does not apply to the land. The subject land is identified as High Biodiversity on Council's Natural Resource - Biodiversity Map.

Part 8. Fire Safety Code:

No - does not apply to the land. The subject land is identified as High Biodiversity on Council's Natural Resource - Biodiversity Map.

Coastal Protection:

The subject land is not affected by the operation of Section 5 of the Coastal Management Act, 2016.

Mine Subsidence:

The subject land is not within a proclaimed mine subsidence district as defined by Section 20 of the Coal Mine Subsidence Compensation Act, 2017.

Road Widening and Road Realignment:

The land is not affected by any road widening or road realignment under:

- (a) Division 2 of Part 3 of the Roads Act 1993; or
- (b) Any environmental planning instrument; or
- (c) Any resolution of the Council.

Council and Other Public Authority Policies on Hazard Risk Restrictions:

The land the subject of this Certificate is not affected by any policy adopted by the Council that restricts the use of the land because of the likelihood of land slip, bushfire, tidal inundation, subsidence, acid sulphate soils or any other risk.

The subject land is not affected by a policy adopted by any other public authority and notified to the Council for the express purpose of its adoption by that authority being referred to in planning certificates issued by the Council, that restricts the development of the land because of the likelihood of land slip, bushfire, flooding, tidal inundation, subsidence, acid sulphate soils or any other risk.

The subject land is in whole/part classified as 'Natural Resource - Biodiversity Land' pursuant to the Dubbo Local Environmental Plan 2011, Clause 7.2. For further information, please contact Council's Development and Environment Division on (02) 6801 4000.

The subject land is in whole/part classified as 'Natural Resource - Groundwater Vulnerability' pursuant to the Dubbo Local Environmental Plan 2011, Clause 7.5. For further information, please contact Council's Development and Environment Division on (02) 6801 4000.

Flood-related Development Control Information:

The subject land is not subject to any policy adopted by Council that restricts the use of the land because of the likelihood of flooding.

Land Reserved for Acquisition:

There is no environmental planning instrument, deemed environmental planning instrument or draft environmental planning instrument applying to the subject land that provides for the acquisition of the land by a public authority as referred to in Section 3.15 of the Environmental Planning and Assessment Act, 1979.

Contribution Plans:

Dubbo Water Supply and Sewerage Contributions Policy, applies to the land.

Section 94 Contributions Plan - Urban Stormwater Drainage Headworks Contributions Plan, applies to the land.

Section 94 Urban Roads and Car Parking Contributions Plan, applies to the land.

Section 94 Development Contributions Plan for Dubbo Open Space and Recreation Facilities Plan 2016-2026, applies to the land.

Biodiversity Certified Land:

Council is unaware of any biodiversity certified land under Part 8 of the Biodiversity Conservation Act 2016.

Biodiversity Stewardship Sites:

Council is unaware that the land is a biodiversity stewardship site under a biodiversity stewardship agreement under Part 5 of the Biodiversity Conservation Act 2016.

Native Vegetation Clearing Set Asides:

Council is unaware that the land contains a set aside area under Section 60ZC of the Local Lands Services Act 2013.

Bushfire Prone Land:

The subject land is not identified as Bush Fire Prone Land on the Bush Fire Prone Land Map certified by the Commissioner of the NSW Rural Fire Service under Section 10.3 of the Environmental Planning and Assessment Act, 1979 (EP&A Act 1979).

Property Vegetation Plans:

Council has not been notified of the existence of a property vegetation plan approved under Part 4 the Native Vegetation Act 2003 (and that continues in force) applying to the land.

Orders under Trees (Disputes Between Neighbours) Act, 2006:

Council is not aware of any order made under the Trees (Dispute Between Neighbours) Act, 2006 applying to the subject land.

Directions under Part 3A:

This section of the Act has been repealed.

Site Compatibility Certificates and Conditions of Seniors Housing:

Council is not aware of any current Site Compatibility Certificate (Seniors Housing) or occupancy restrictions applying to the subject land.

Site Compatibility Certificates for Infrastructure, Schools or TAFE Establishments: Council is not aware of any current Site Compatibility Certificate (Infrastructure) applying to the subject land.

Site Compatibility Certificates and Conditions for Affordable Rental Housing: Council is not aware of any current Site Compatibility Certificate (Affordable Rental Housing) or management/operational restrictions pertaining to affordable housing on the subject land.

Paper Subdivision Information:

Council is not aware of any development plan applying to the subject land.

Site Verification Certificates:

Council is not aware of any current Site Verification Certificate (Biophysical Strategic Agricultural Land or Critical Industry Cluster Land) applying to the subject land.

Loose-fill Asbestos Insulation:

Council is not aware of any current loose-fill asbestos insulation applying to the subject land.

Affected Building Notices and Building Product Rectification Orders: Council is not aware of any current affected building notices and building product rectification orders applying to the subject land.

Matters arising under the Contaminated Land Management Act, 1997

- Pursuant to Section 59(2) of the Contaminated Land Management Act 1997, the subject land is:
- (a) Not within land declared to be significantly contaminated land under Part 3 of that Act;
- (b) Not subject to a Management Order in the meaning of that Act:
- (c) Not the subject of an approved Voluntary Management Proposal of the Environment Protection Authority's agreement under Section 17 of that Act;
- (d) Not subject to an ongoing Maintenance Order under Part 3 of that Act;
- (e) Not the subject of a Site Audit Statement within the meaning of Part 4 of that Act.

For further enquires, please contact Council's Customer Service Centre on 6801 4000.

Stephen Wallace Director Planning and Environment

Appendix C Lotsearch

Date: 11 May 2022 11:31:01 Reference: LS032012 EP Address: Jannali Road, Dubbo, NSW 2830

Disclaimer:

The purpose of this report is to provide an overview of some of the site history, environmental risk and planning information available, affecting an individual address or geographical area in which the property is located. It is not a substitute for an on-site inspection or review of other available reports and records. It is not intended to be, and should not be taken to be, a rating or assessment of the desirability or market value of the property or its features. You should obtain independent advice before you make any decision based on the information within the report. The detailed terms applicable to use of this report are set out at the end of this report.

Dataset Listing

Datasets contained within this report, detailing their source and data currency:

Dataset Name	Custodian	Supply Date	Currency Date	Update Frequency	Dataset Buffer (m)	No. Features On-site	No. Features within 100m	No. Features within Buffer
Cadastre Boundaries	NSW Department of Customer Service - Spatial Services	06/04/2022	06/04/2022	Quarterly	-	-	-	-
Topographic Data	NSW Department of Customer Service - Spatial Services	25/06/2019	25/06/2019	Annually	-	-	-	-
List of NSW contaminated sites notified to EPA	Environment Protection Authority	19/04/2022	11/04/2022	Monthly	1000m	0	0	0
Contaminated Land Records of Notice	Environment Protection Authority	10/05/2022	10/05/2022	Monthly	1000m	0	0	0
Former Gasworks	Environment Protection Authority	02/03/2022	14/07/2021	Quarterly	1000m	0	0	0
National Waste Management Facilities Database	Geoscience Australia	12/05/2021	07/03/2017	Annually	1000m	0	0	0
National Liquid Fuel Facilities	Geoscience Australia	15/02/2021	13/07/2012	Annually	1000m	0	0	1
EPA PFAS Investigation Program	Environment Protection Authority	03/05/2022	14/07/2021	Monthly	2000m	1	1	1
Defence PFAS Investigation & Management Program - Investigation Sites	Department of Defence	11/05/2022	11/05/2022	Monthly	2000m	0	0	0
Defence PFAS Investigation & Management Program - Management Sites	Department of Defence	11/05/2022	11/05/2022	Monthly	2000m	0	0	0
Airservices Australia National PFAS Management Program	Airservices Australia	11/05/2022	11/05/2022	Monthly	2000m	0	0	0
Defence 3 Year Regional Contamination Investigation Program	Department of Defence	03/03/2022	03/03/2022	Quarterly	2000m	0	0	0
EPA Other Sites with Contamination Issues	Environment Protection Authority	16/02/2022	13/12/2018	Annually	1000m	0	0	0
Licensed Activities under the POEO Act 1997	Environment Protection Authority	10/05/2022	10/05/2022	Monthly	1000m	0	1	2
Delicensed POEO Activities still regulated by the EPA	Environment Protection Authority	10/05/2022	10/05/2022	Monthly	1000m	0	1	1
Former POEO Licensed Activities now revoked or surrendered	Environment Protection Authority	10/05/2022	10/05/2022	Monthly	1000m	0	0	3
UBD Business Directories (Premise & Intersection Matches)	Hardie Grant			Not required	150m	0	4	4
UBD Business Directories (Road & Area Matches)	Hardie Grant			Not required	150m	-	0	16
UBD Business Directory Dry Cleaners & Motor Garages/Service Stations (Premise & Intersection Matches)	Hardie Grant			Not required	500m	0	0	0
UBD Business Directory Dry Cleaners & Motor Garages/Service Stations (Road & Area Matches)	Hardie Grant			Not required	500m	-	0	1
Points of Interest	NSW Department of Customer Service - Spatial Services	19/08/2021	19/08/2021	Quarterly	1000m	0	0	14
Tanks (Areas)	NSW Department of Customer Service - Spatial Services	19/08/2021	19/08/2021	Quarterly	1000m	0	0	0
Tanks (Points)	NSW Department of Customer Service - Spatial Services	19/08/2021	19/08/2021	Quarterly	1000m	0	0	1
Major Easements	NSW Department of Customer Service - Spatial Services	19/08/2021	19/08/2021	Quarterly	1000m	1	1	7
State Forest	Forestry Corporation of NSW	25/02/2021	14/02/2021	Annually	1000m	0	0	0
NSW National Parks and Wildlife Service Reserves	NSW Office of Environment & Heritage	10/02/2022	31/12/2021	Annually	1000m	0	0	0
Hydrogeology Map of Australia	Commonwealth of Australia (Geoscience Australia)	08/10/2014	17/03/2000	Annually	1000m	1	1	1
Temporary Water Restriction (Botany Sands Groundwater Source) Order 2018	NSW Department of Planning, Industry and Environment	28/03/2022	23/02/2018	Annually	1000m	0	0	0
National Groundwater Information System (NGIS) Boreholes	Bureau of Meteorology; Water NSW	24/01/2022	24/01/2022	Annually	2000m	0	1	69

Dataset Name	Custodian	Supply Date	Currency Date	Update Frequency	Dataset Buffer (m)		No. Features within 100m	No. Features within Buffer
NSW Seamless Geology Single Layer: Rock Units	Department of Regional NSW	17/02/2022	01/05/2021	Annually	1000m	2	2	2
NSW Seamless Geology – Single Layer: Trendlines	Department of Regional NSW	17/02/2022	01/05/2021	Annually	1000m	0	0	0
NSW Seamless Geology – Single Layer: Geological Boundaries and Faults	Department of Regional NSW	17/02/2022	01/05/2021	Annually	1000m	0	0	0
Naturally Occurring Asbestos Potential	NSW Dept. of Industry, Resources & Energy	04/12/2015	24/09/2015	Unknown	1000m	0	0	0
Atlas of Australian Soils	Australian Bureau of Agriculture and Resource Economics and Sciences (ABARES)	19/05/2017	17/02/2011	As required	1000m	1	1	2
Soil Landscapes of Central and Eastern NSW	NSW Department of Planning, Industry and Environment	14/10/2020	27/07/2020	Annually	1000m	1	2	3
Environmental Planning Instrument Acid Sulfate Soils	NSW Department of Planning, Industry and Environment	06/04/2022	18/02/2022	Monthly	500m	0	-	-
Atlas of Australian Acid Sulfate Soils	CSIRO	19/01/2017	21/02/2013	As required	1000m	1	1	2
Dryland Salinity - National Assessment	National Land and Water Resources Audit	18/07/2014	12/05/2013	None planned	1000m	1	1	1
Mining Subsidence Districts	NSW Department of Customer Service - Subsidence Advisory NSW	19/08/2021	05/08/2021	Quarterly	1000m	0	0	0
Current Mining Titles	NSW Department of Industry	20/04/2022	20/04/2022	Monthly	1000m	0	0	0
Mining Title Applications	NSW Department of Industry	20/04/2022	20/04/2022	Monthly	1000m	0	0	0
Historic Mining Titles	NSW Department of Industry	20/04/2022	20/04/2022	Monthly	1000m	5	5	5
Environmental Planning Instrument SEPP State Significant Precincts	NSW Department of Planning, Industry and Environment	15/11/2021	07/12/2018	Monthly	1000m	0	0	0
Environmental Planning Instrument Land Zoning	NSW Department of Planning, Industry and Environment	15/11/2021	05/11/2021	Monthly	1000m	1	6	39
Commonwealth Heritage List	Australian Government Department of the Agriculture, Water and the Environment	18/05/2021	20/11/2019	Annually	1000m	0	0	0
National Heritage List	Australian Government Department of the Agriculture, Water and the Environment	18/05/2021	20/11/2019	Annually	1000m	0	0	0
State Heritage Register - Curtilages	NSW Department of Planning, Industry and Environment	19/08/2021	25/06/2021	Quarterly	1000m	0	0	0
Environmental Planning Instrument Local Heritage	NSW Department of Planning, Industry and Environment	06/04/2022	25/03/2022	Monthly	1000m	0	0	0
Bush Fire Prone Land	NSW Rural Fire Service	09/05/2022	08/12/2021	Weekly	1000m	0	0	0
Ramsar Wetlands of Australia	Australian Government Department of Agriculture, Water and the Environment	28/03/2022	19/03/2020	Annually	1000m	0	0	0
Groundwater Dependent Ecosystems	Bureau of Meteorology	14/08/2017	15/05/2017	Annually	1000m	1	1	1
Inflow Dependent Ecosystems Likelihood	Bureau of Meteorology	14/08/2017	15/05/2017	Unknown	1000m	3	3	5
NSW BioNet Species Sightings	NSW Office of Environment & Heritage	09/05/2022	09/05/2022	Weekly	10000m	-	-	-

Site Diagram Jannali Road, Dubbo, NSW 2830

ata Source Aerial Imagery:
Aerometrex Pty Ltd

D ©

aller lengths removed for readability. nts are approximate only and may simplified or sn the total site area have not been labelled for increased that make up a small perce tage

Disclaimers Measure

Parcels legibility

Coordinate System: GDA 1994 MGA Zone 56

Date: 11 May 2022

Contaminated Land

Jannali Road, Dubbo, NSW 2830

List of NSW contaminated sites notified to EPA

Records from the NSW EPA Contaminated Land list within the dataset buffer:

Map Id	Site	Address	Suburb	Activity	Management Class	Status	Location Confidence	Dist	Direction
N/A	No records in buffer								

The values within the EPA site management class in the table above, are given more detailed explanations in the table below:

EPA site management class	Explanation
Contamination being managed via the planning process (EP&A Act)	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation. The contamination of this site is managed by the consent authority under the Environmental Planning and Assessment Act 1979 (EP&A Act) planning approval process, with EPA involvement as necessary to ensure significant contamination is adequately addressed. The consent authority is typically a local council or the Department of Planning and Environment.
Contamination currently regulated under CLM Act	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation under the Contaminated Land Management Act 1997 (CLM Act). Management of the contamination is regulated by the EPA under the CLM Act. Regulatory notices are available on the EPA's Contaminated Land Public Record of Notices.
Contamination currently regulated under POEO Act	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation. Management of the contamination is regulated under the Protection of the Environment Operations Act 1997 (POEO Act). The EPA's regulatory actions under the POEO Act are available on the POEO public register.
Contamination formerly regulated under the CLM Act	The EPA has determined that the contamination is no longer significant enough to warrant regulation under the Contaminated Land Management Act 1997 (CLM Act). The contamination was addressed under the CLM Act.
Contamination formerly regulated under the POEO Act	The EPA has determined that the contamination is no longer significant enough to warrant regulation. The contamination was addressed under the Protection of the Environment Operations Act 1997 (POEO Act).
Contamination was addressed via the planning process (EP&A Act)	The EPA has determined that the contamination is no longer significant enough to warrant regulation. The contamination was addressed by the appropriate consent authority via the planning process under the Environmental Planning and Assessment Act 1979 (EP&A Act).
Ongoing maintenance required to manage residual contamination (CLM Act)	The EPA has determined that ongoing maintenance, under the Contaminated Land Management Act 1997 (CLM Act), is required to manage the residual contamination. Regulatory notices under the CLM Act are available on the EPA's Contaminated Land Public Record of Notices.
Regulation being finalised	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation under the Contaminated Land Management Act 1997. A regulatory approach is being finalised.
Regulation under the CLM Act not required	The EPA has completed an assessment of the contamination and decided that regulation under the Contaminated Land Management Act 1997 is not required.
Under assessment	The contamination is being assessed by the EPA to determine whether regulation is required. The EPA may require further information to complete the assessment. For example, the completion of management actions regulated under the planning process or Protection of the Environment Operations Act 1997. Alternatively, the EPA may require information via a notice issued under s77 of the Contaminated Land Management Act 1997 or issue a Preliminary Investigation Order.

NSW EPA Contaminated Land List Data Source: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

Contaminated Land

Jannali Road, Dubbo, NSW 2830

Contaminated Land: Records of Notice

Record of Notices within the dataset buffer:

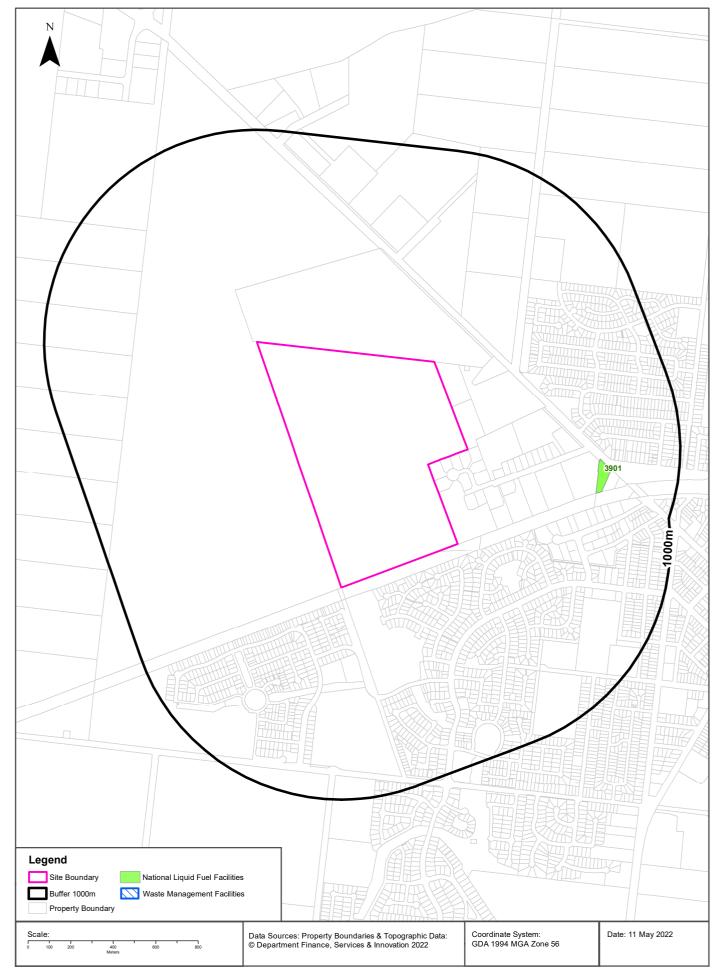
Map Id	Name	Address	Suburb	Notices	Area No	Location Confidence	Distance	Direction
N/A	No records in buffer							

Contaminated Land Records of Notice Data Source: Environment Protection Authority © State of New South Wales through the Environment Protection Authority Terms of use and disclaimer for Contaminated Land: Record of Notices, please visit http://www.epa.nsw.gov.au/clm/clmdisclaimer.htm

Former Gasworks

Former Gasworks within the dataset buffer:

Map Id	Location	Council	Further Info	Location Confidence	Distance	Direction
N/A	No records in buffer					


Former Gasworks Data Source: Environment Protection Authority

 $\ensuremath{\mathbb{C}}$ State of New South Wales through the Environment Protection Authority

Waste Management & Liquid Fuel Facilities

Jannali Road, Dubbo, NSW 2830

Waste Management & Liquid Fuel Facilities

Jannali Road, Dubbo, NSW 2830

National Waste Management Site Database

Sites on the National Waste Management Site Database within the dataset buffer:

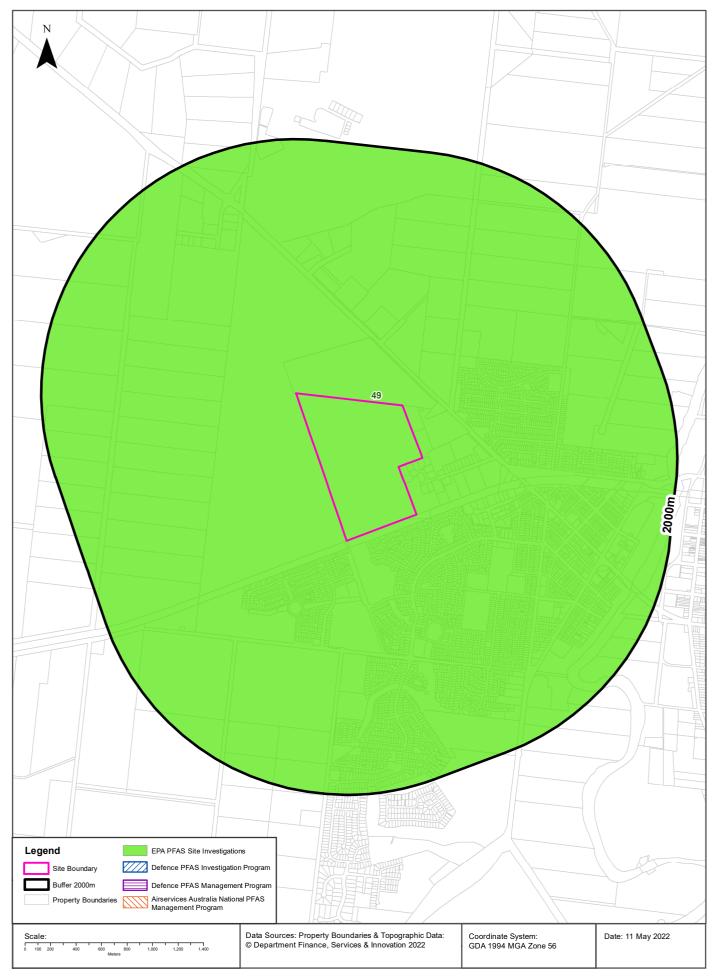
Site Id	Owner	Name	Address	Suburb	Class	Landfill	Reprocess	Transfer	Comments	Loc Conf	Dist	Direction
N/A	No records in buffer											

Waste Management Facilities Data Source: Geoscience Australia

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

National Liquid Fuel Facilities

National Liquid Fuel Facilties within the dataset buffer:


Map Id	Owner	Name	Address	Suburb	Class	Operational Status	Operator	Revision Date	Loc Conf	Dist	Direction
3901	BP	BP West Dubbo	98 Victoria Street	Dubbo	Petrol Station	Operational		25/07/2011	Premise Match	617m	East

National Liquid Fuel Facilities Data Source: Geoscience Australia

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

PFAS Investigation & Management Programs Jannali Road, Dubbo, NSW 2830

PFAS Investigation & Management Programs

Jannali Road, Dubbo, NSW 2830

EPA PFAS Investigation Program

Sites that are part of the EPA PFAS investigation program, within the dataset buffer:

Map ID	Site	Address	Loc Conf	Dist	Dir
49	Dubbo groundwater investigation		Area Match	0m	On- site

EPA PFAS Investigation Program: Environment Protection Authority

© State of New South Wales through the Environment Protection Authority

Defence PFAS Investigation Program

Sites being investigated by the Department of Defence for PFAS contamination within the dataset buffer:

Map ID	Base Name	Address	Loc Conf	Dist	Dir
N/A	No records in buffer				

Defence PFAS Investigation Program Data Custodian: Department of Defence, Australian Government

Defence PFAS Management Program

Sites being managed by the Department of Defence for PFAS contamination within the dataset buffer:

Map ID	Base Name	Address	Loc Conf	Dist	Dir
N/A	No records in buffer				

Defence PFAS Management Program Data Custodian: Department of Defence, Australian Government

Airservices Australia National PFAS Management Program

Sites being investigated or managed by Airservices Australia for PFAS contamination within the dataset buffer:

Map ID	Site Name	Impacts	Loc Conf	Dist	Dir
N/A	No records in buffer				

Airservices Australia National PFAS Management Program Data Custodian: Airservices Australia

Defence Sites

Jannali Road, Dubbo, NSW 2830

Defence 3 Year Regional Contamination Investigation Program

Sites which have been assessed as part of the Defence 3 Year Regional Contamination Investigation Program within the dataset buffer:

Property ID	Base Name	Address	Known Contamination	Loc Conf	Dist	Dir
N/A	No records in buffer					

Defence 3 Year Regional Contamination Investigation Program, Data Custodian: Department of Defence, Australian Government

EPA Other Sites with Contamination Issues

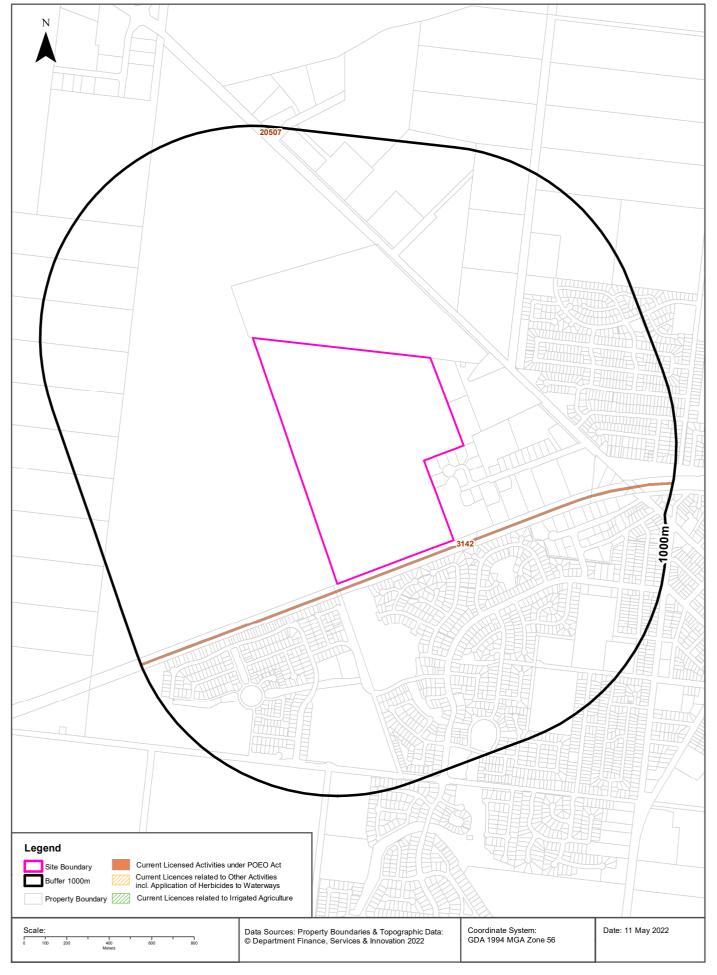
Jannali Road, Dubbo, NSW 2830

EPA Other Sites with Contamination Issues

This dataset contains other sites identified on the EPA website as having contamination issues. This dataset currently includes:

- James Hardie asbestos manufacturing and waste disposal sites
- Radiological investigation sites in Hunter's Hill
- Pasminco Lead Abatement Strategy Area

Sites within the dataset buffer:


Site Id	Site Name	Site Address	Dataset	Comments	Location Confidence	Distance	Direction
N/A	No records in buffer						

EPA Other Sites with Contamination Issues: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

Current EPA Licensed Activities

Jannali Road, Dubbo, NSW 2830

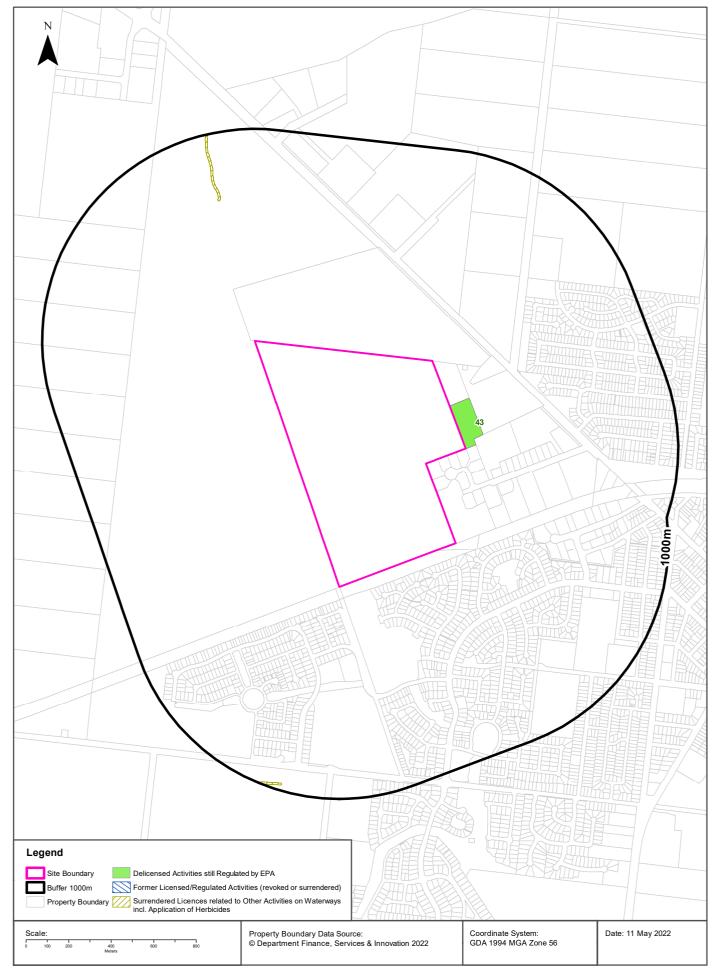
EPA Activities

Jannali Road, Dubbo, NSW 2830

Licensed Activities under the POEO Act 1997

Licensed activities under the Protection of the Environment Operations Act 1997, within the dataset buffer:

EPL	Organisation	Name	Address	Suburb	Activity	Loc Conf	Distance	Direction
3142	AUSTRALIAN RAIL TRACK CORPORATION LIMITED		AUSTRALIAN RAIL TRACK CORPORATION (ARTC) NETWORK, SYDNEY, NSW 2001		Railway systems activities	Network of Features	25m	South
20507	HARLEY JOB		18 R Narromine Road, DUBBO, NSW 2830		Recovery of hazardous and other waste, Recovery of waste oil, Waste storage - hazardous, restricted solid, liquid, clinical and related waste and asbestos waste,	Premise Match	964m	North


POEO Licence Data Source: Environment Protection Authority

 $\ensuremath{\mathbb{C}}$ State of New South Wales through the Environment Protection Authority

Delicensed & Former Licensed EPA Activities

Jannali Road, Dubbo, NSW 2830

EPA Activities

Jannali Road, Dubbo, NSW 2830

Delicensed Activities still regulated by the EPA

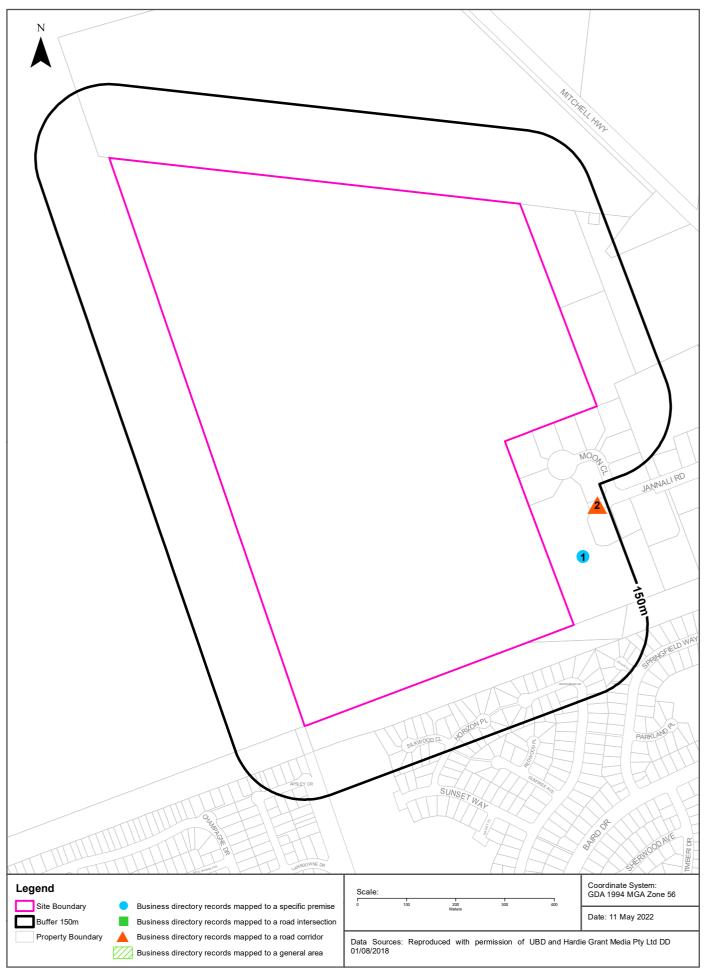
Delicensed activities still regulated by the EPA, within the dataset buffer:

Licence No	Organisation	Name	Address	Suburb	Activity	Loc Conf	Distance	Direction
43	BORAL RESOURCES (COUNTRY) PTY. LIMITED	BORAL COUNTRY - CONCRETE & QUARRIES	JANALLI ROAD	DUBBO	Concrete works	Premise Match	0m	East

Delicensed Activities Data Source: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

Former Licensed Activities under the POEO Act 1997, now revoked or surrendered

Former Licensed activities under the Protection of the Environment Operations Act 1997, now revoked or surrendered, within the dataset buffer:


Licence No	Organisation	Location	Status	Issued Date	Activity	Loc Conf	Distance	Direction
4653	LUHRMANN ENVIRONMENT MANAGEMENT PTY LTD	WATERWAYS THROUGHOUT NSW	Surrendered	06/09/2000	Other Activities / Non Scheduled Activity - Application of Herbicides	Network of Features	681m	North West
4838	Robert Orchard	Various Waterways throughout New South Wales - SYDNEY NSW 2000	Surrendered	07/09/2000	Other Activities / Non Scheduled Activity - Application of Herbicides	Network of Features	681m	North West
6630	SYDNEY WEED & PEST MANAGEMENT PTY LTD	WATERWAYS THROUGHOUT NSW - PROSPECT, NSW, 2148	Surrendered	09/11/2000	Other Activities / Non Scheduled Activity - Application of Herbicides	Network of Features	681m	North West

Former Licensed Activities Data Source: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

Historical Business Directories

Jannali Road, Dubbo, NSW 2830

Historical Business Directories

Jannali Road, Dubbo, NSW 2830

Business Directory Records 1950-1991 Premise or Road Intersection Matches

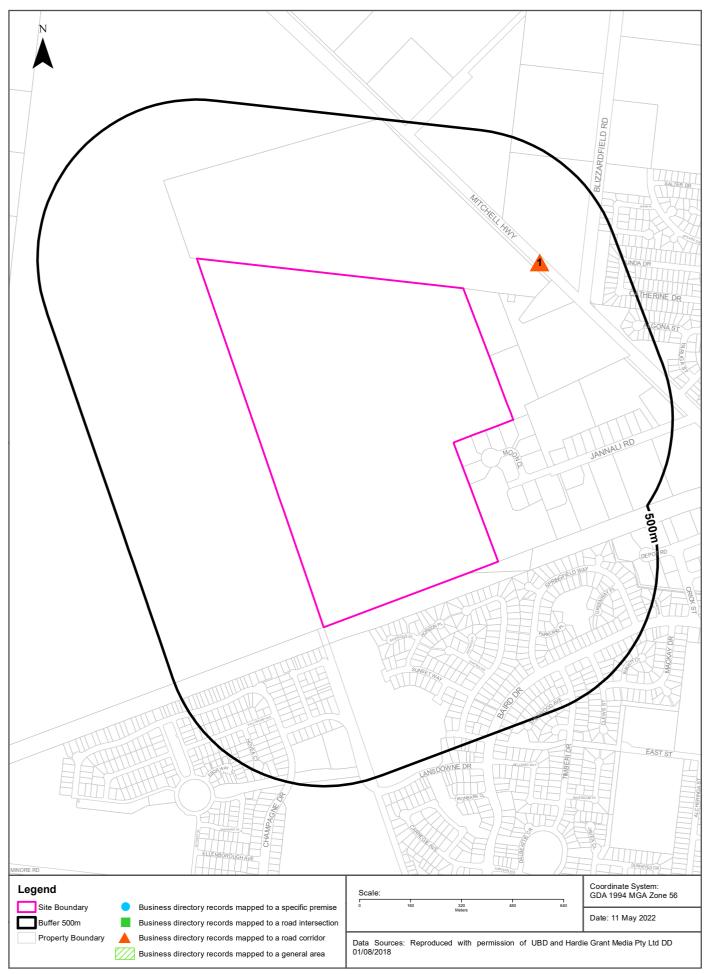
Universal Business Directory records from years 1991, 1982, 1970, 1961 & 1950, mapped to a premise or road intersection within the dataset buffer:

Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Property Boundary or Road Intersection	Direction
1	MOTOR CAR DEALERS - NEW &/OR USED	Swane Peter Trucks., 14 Jannali Rd, Dubbo 2830	125301	1991	Premise Match	Om	South East
	TRACTOR MFRS. &/OR IMPS. &/OR DISTS.	Swane Peter Trucks., 14 Jannali Rd, Dubbo 2830	131191	1991	Premise Match	0m	South East
	FORK LIFT TRUCK SERVICE, MAINTENANCE &/OR REPAIRS.	Swane. Peter Trucks., 14 Jannali Rd, Dubbo 2830	119493	1991	Premise Match	Om	South East
	MOTOR ACCESSORIES- RETAIL	Swans Peter Trucks., 14 Jannali Rd, Dubbo 2830	125277	1991	Premise Match	0m	South East

Reproduced with permission of UBD and Hardie Grant Media Pty Ltd DD 01/08/2018

Business Directory Records 1950-1991 Road or Area Matches

Universal Business Directory records from years 1991, 1982, 1970, 1961 & 1950, mapped to a road or an area, within the dataset buffer. Records are mapped to the road when a building number is not supplied, cannot be found, or the road has been renumbered since the directory was published:


Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Road Corridor or Area
2	CONCRETE PRODUCTS MFRS. &/OR DISTS. &/OR W/SALERS	Amatek Rocla., Jannali Rd, Dubbo 2830	126825	1991	Road Match	113m
	FENCING MATERIAL MFRS. &/OR DISTS	Amatek Rocla., Jannali Rd, Dubbo 2830	119457	1991	Road Match	113m
	PIPE &/OR PIPE FITTINGS MFRS. &/OR DISTS	Amatek Rocla., Jannali Rd, Dubbo 2830	125514	1991	Road Match	113m
	PIPE &/OR PIPE FITTINGS MFRS. &/OR DISTS CONCRETE.	Amatek Rocla., Jannali Rd, Dubbo 2830	125517	1991	Road Match	113m
	SEPTIC TANK MFRS. &/OR INSTALLERS &/OR SPECIALISTS	Amatek Rocla., Jannali Rd, Dubbo 2830	125668	1991	Road Match	113m
	TANK &/OR TANKSTAND MFRS. &/OR DISTS	Amatek Rocla., Jannali Rd, Dubbo 2830	131148	1991	Road Match	113m
	MOTOR OIL, SPIRIT & GREASE MFRS. &/OR IMPS. &/OR DISTS.	Ampol Petroleum., Jannali Rd, Dubbo 2830	125361	1991	Road Match	113m
	CONCRETE PRODUCTS MFRS. &/OR DISTS. &/OR W/SALERS	BMG Concrete., Jannali Rd, Dubbo 2830	126826	1991	Road Match	113m
	GARAGE MFRS. &/OR DISTS. &/OR INSTALLERS	McFadden D. & G. Garages., Jannali Rd, Dubbo 2830	119529	1991	Road Match	113m
	SHEDS	McFadden D. & G. Garages., Jannali Rd, Dubbo 2830	125676	1991	Road Match	113m
	BORING & DRILLING CONTRACTORS	Pontil Pty. Ltd., Jannali Rd, Dubbo 2830	126614	1991	Road Match	113m
	MOTOR OIL &/OR SPIRIT DEPOTS.	Ampol Petroleum, Jannali Rd., Dubbo 2830	184214	1982	Road Match	113m
	CONCRETE PRODUCTS MFRS. &/OR DISTS. &/OR W/SALERS.	Monier Pipe Co., Jannali Rd., Dubbo 2830	183699	1982	Road Match	113m
	PIPE &/OR PIPE FITTINGS MFRS. &/OR DISTS.	Monier Pipe Co., Jannali Rd., Dubbo 2830	184309	1982	Road Match	113m
	PIPE MFRS CONCRETE.	Monier Pipe Co., Jannali Rd., Dubbo 2830	184308	1982	Road Match	113m
	MOTOR BRAKE SPECIALISTS.	Ratcliff Brake Service. Jannali Rd., Dubbo 2830	184144	1982	Road Match	113m

Reproduced with permission of UBD and Hardie Grant Media Pty Ltd DD 01/08/2018

Dry Cleaners, Motor Garages & Service Stations

Jannali Road, Dubbo, NSW 2830

Historical Business Directories

Jannali Road, Dubbo, NSW 2830

Dry Cleaners, Motor Garages & Service Stations Premise or Road Intersection Matches

Dry Cleaners, Motor Garages & Service Stations from UBD Business Directories, mapped to a premise or road intersection, within the dataset buffer.

Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Property Boundary or Road Intersection	Direction
N/A	No records in buffer						

Reproduced with permission of UBD and Hardie Grant Media Pty Ltd DD 01/08/2018

Dry Cleaners, Motor Garages & Service Stations Road or Area Matches

Dry Cleaners, Motor Garages & Service Stations from UBD Business Directories, mapped to a road or an area, within the dataset buffer. Records are mapped to the road when a building number is not supplied, cannot be found, or the road has been renumbered since the directory was published.

Ma	ıp Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Road Corridor or Area
	1	MOTOR SERVICE STATIONS-PETROL, ETC.	Poplars Service Station and Caravan Park, Mitchell Highway., Dubbo	200328	1961	Road Match	212m

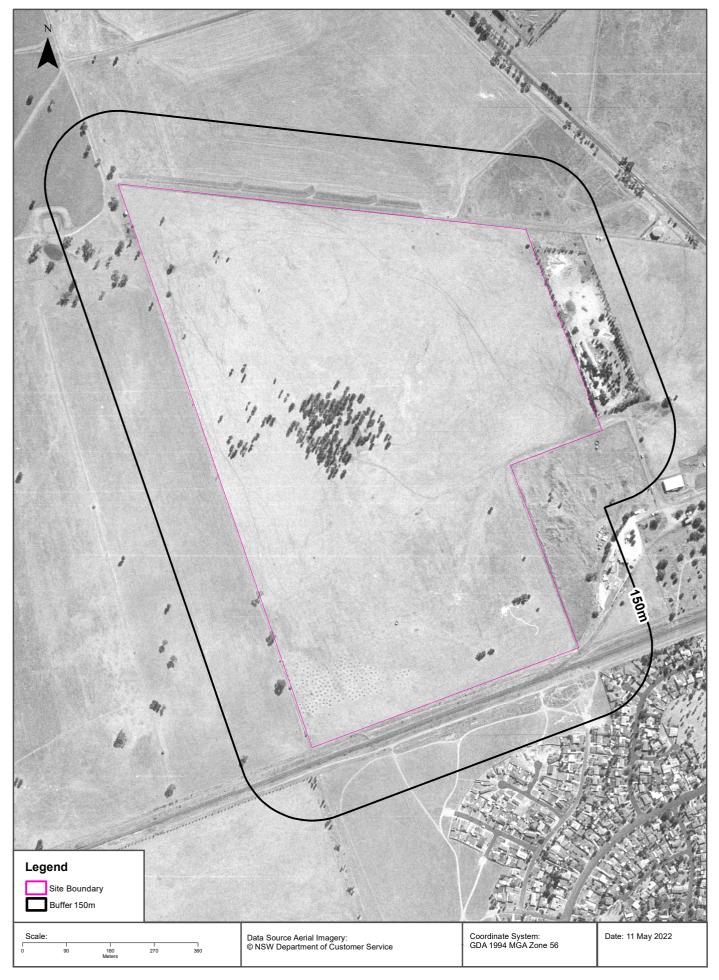
Reproduced with permission of UBD and Hardie Grant Media Pty Ltd DD 01/08/2018

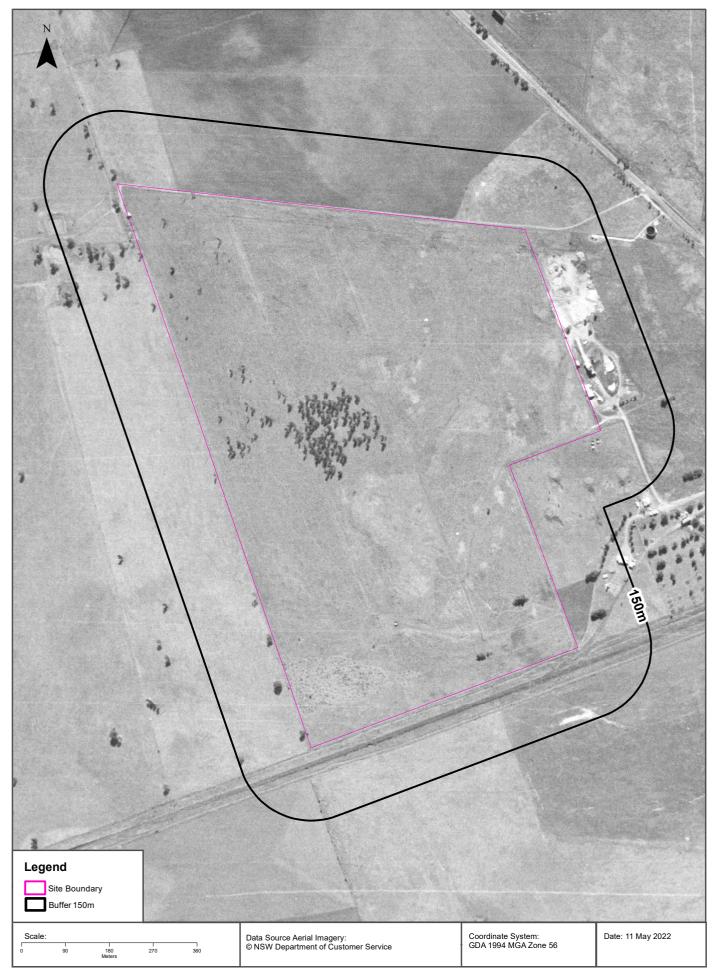
Aerial Imagery 2021

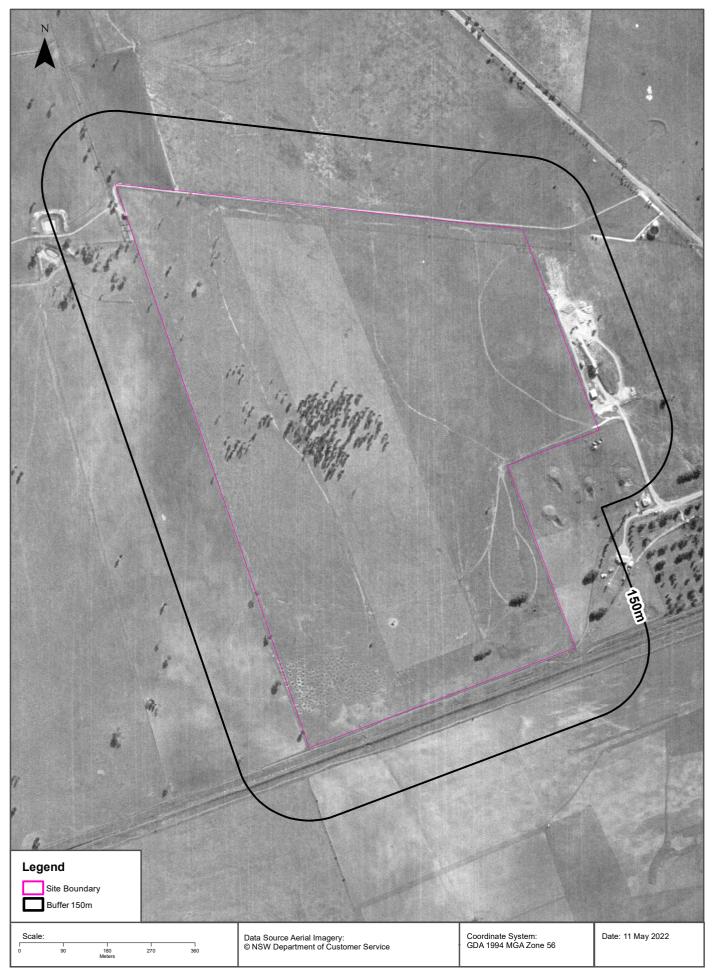
Jannali Road, Dubbo, NSW 2830

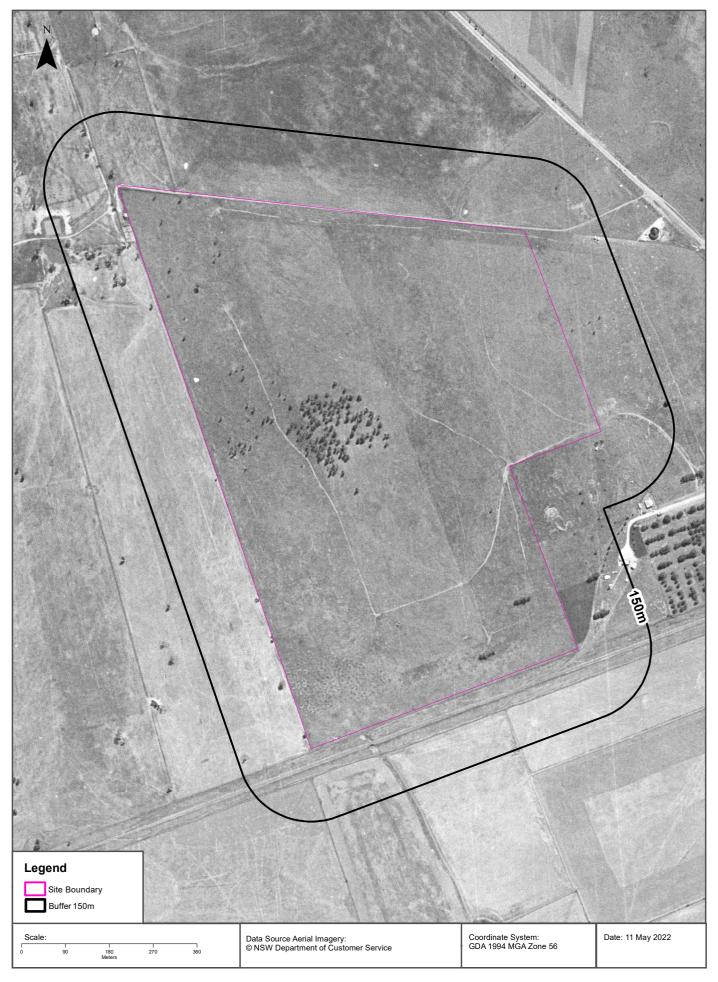
Aerial Imagery 2020 Jannali Road, Dubbo, NSW 2830

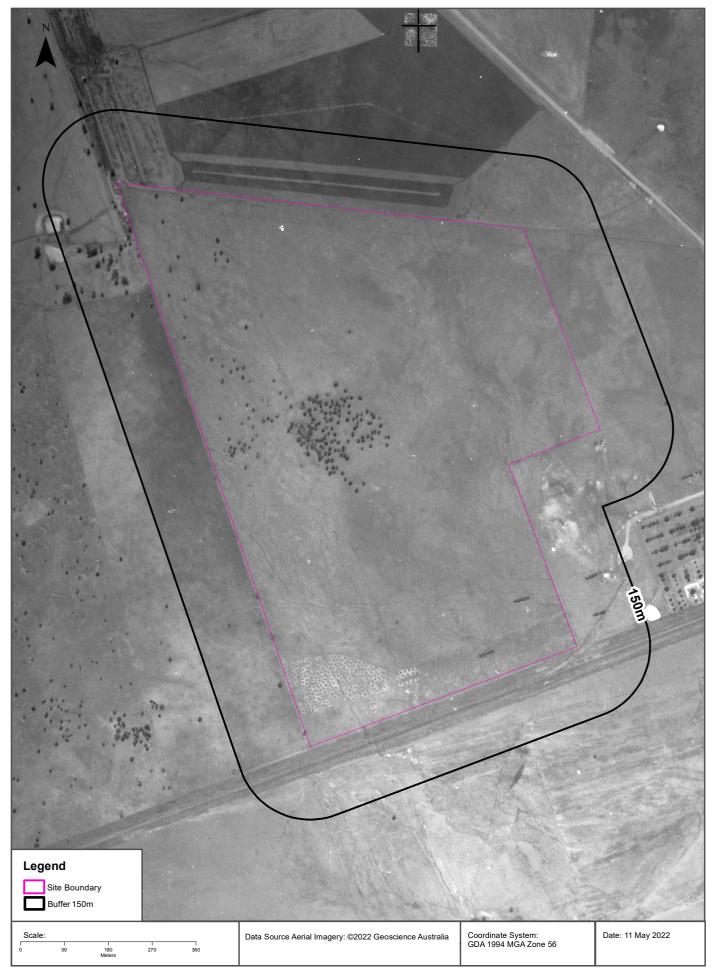
Aerial Imagery 2011 Jannali Road, Dubbo, NSW 2830

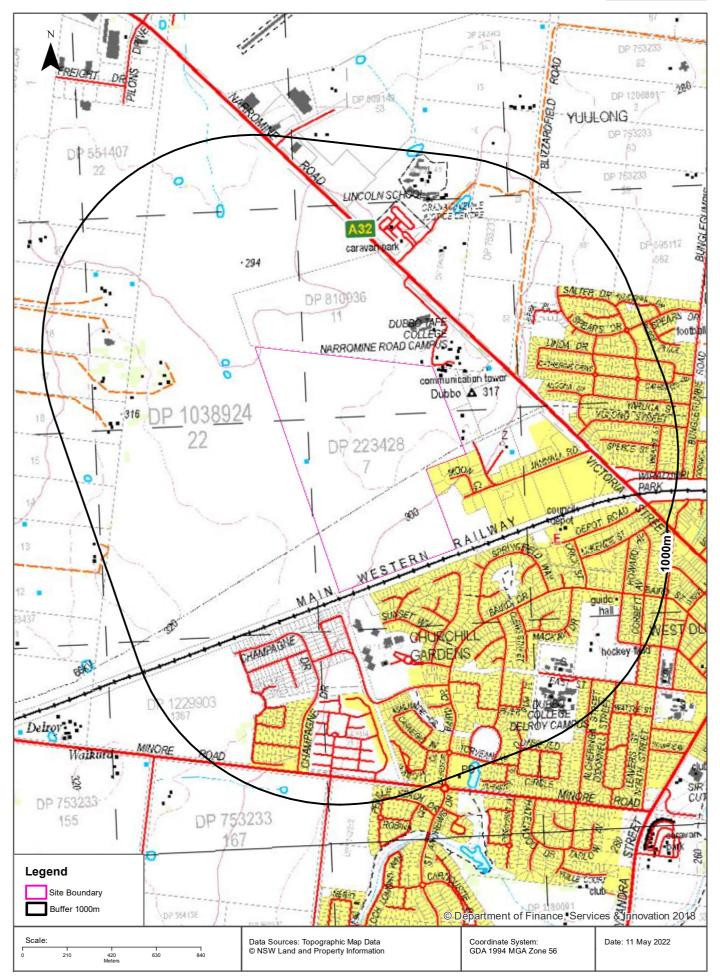


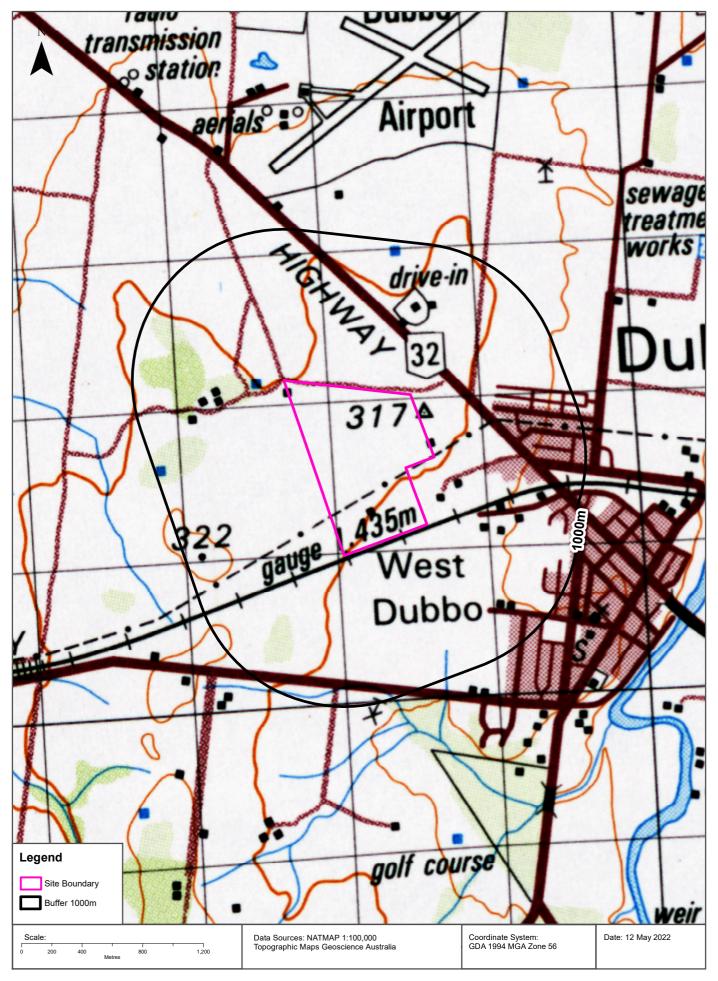


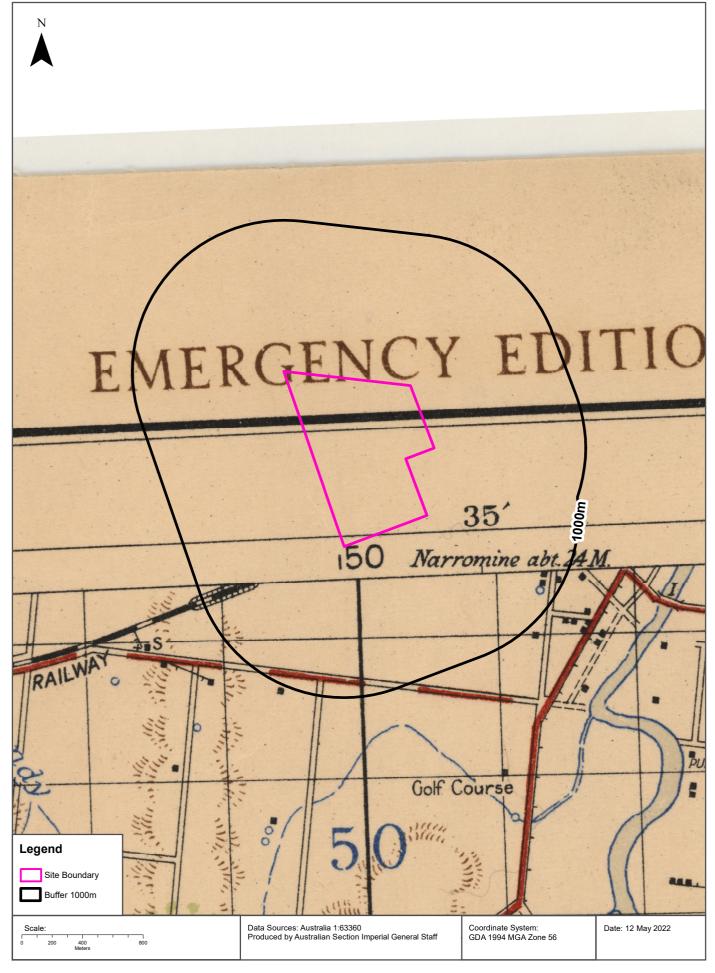


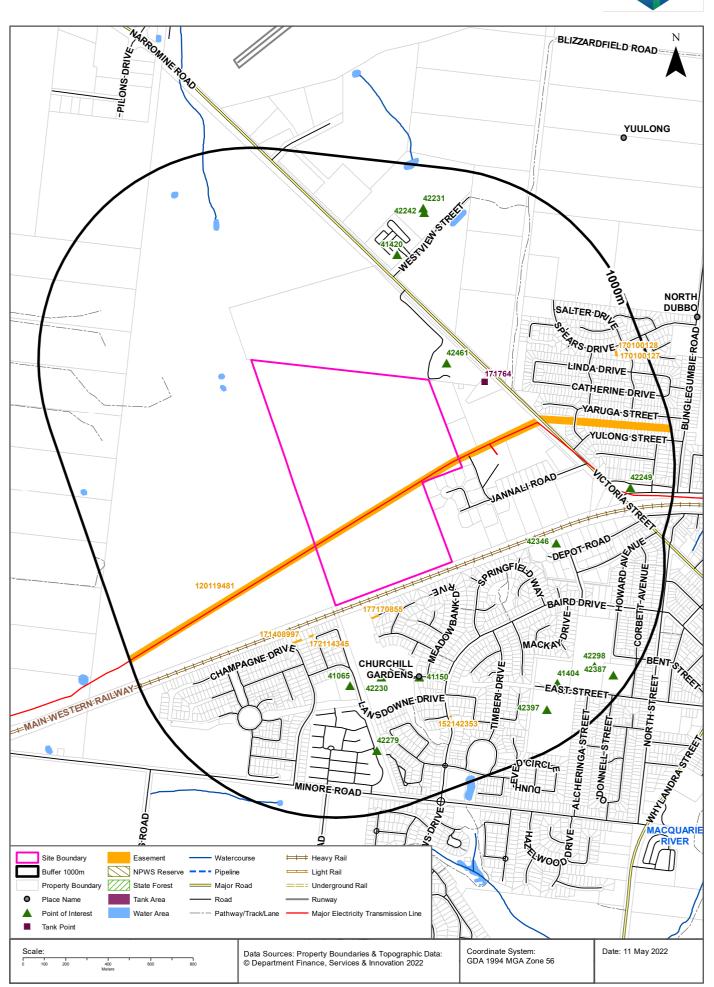







Topographic Map 2015


Historical Map 1973



Historical Map c.1942

Jannali Road, Dubbo, NSW 2830

Points of Interest

What Points of Interest exist within the dataset buffer?

Map Id	Feature Type	Label	Distance	Direction
42461	TAFE College	DUBBO TAFE COLLEGE NARROMINE ROAD CAMPUS	116m	North East
41065	Nursing Home	BILL NEWTON VC GARDENS	384m	South
42230	Combined Primary-Secondary School	MACQUARIE ANGLICAN GRAMMAR SCHOOL	392m	South
41150	Urban Place	CHURCHILL GARDENS	453m	South
42346	SES Facility	DUBBO SES	499m	East
41420	Tourist Park / Home Village	WESTVIEW TOURIST CARAVAN PARK	570m	North
42279	Retirement Village	HORIZONS VILLAGE	710m	South
41404	Special School	YAWARRA COMMUNITY SCHOOL	757m	South East
42242	Gaol	ORANA JUVENILE JUSTICE CENTRE	780m	North
42249	Park	WIRADJURI PARK	797m	East
42231	Special School	LINCOLN SCHOOL	800m	North
42397	High School	DUBBO COLLEGE DELROY CAMPUS	827m	South East
42298	Sports Field	HOCKEY FIELD	831m	South East
42387	Park	PIONEER PARK	927m	South East

Topographic Data Source: © Land and Property Information (2015)

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Jannali Road, Dubbo, NSW 2830

Tanks (Areas)

What are the Tank Areas located within the dataset buffer?

Note. The large majority of tank features provided by LPI are derived from aerial imagery & are therefore primarily above ground tanks.

Map Id	Tank Type	Status	Name	Feature Currency	Distance	Direction
N/A	No records in buffer					

Tanks (Points)

What are the Tank Points located within the dataset buffer? Note. The large majority of tank features provided by LPI are derived from aerial imagery & are therefore primarily above ground tanks.

Map Id	Tank Type	Status	Name	Feature Currency	Distance	Direction
171764	Water	Operational		09/10/2009	243m	North East

Tanks Data Source: © Land and Property Information (2015)

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Major Easements

What Major Easements exist within the dataset buffer?

Note. Easements provided by LPI are not at the detail of local governments. They are limited to major easements such as Right of Carriageway, Electrical Lines (66kVa etc.), Easement to drain water & Significant subterranean pipelines (gas, water etc.).

Map Id	Easement Class	Easement Type	Easement Width	Distance	Direction
120119481	Primary	Undefined		0m	On-site
177170855	Primary	Right of way	4m	113m	South
172114345	Primary	Right of way	4m	174m	South
171408997	Primary	Right of way	4m	228m	South
152142353	Primary	Right of way	5m	678m	South
170100128	Primary	Right of way	2.5m	864m	North East
170100127	Primary	Right of way	2.5m	866m	North East

Easements Data Source: © Land and Property Information (2015)

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

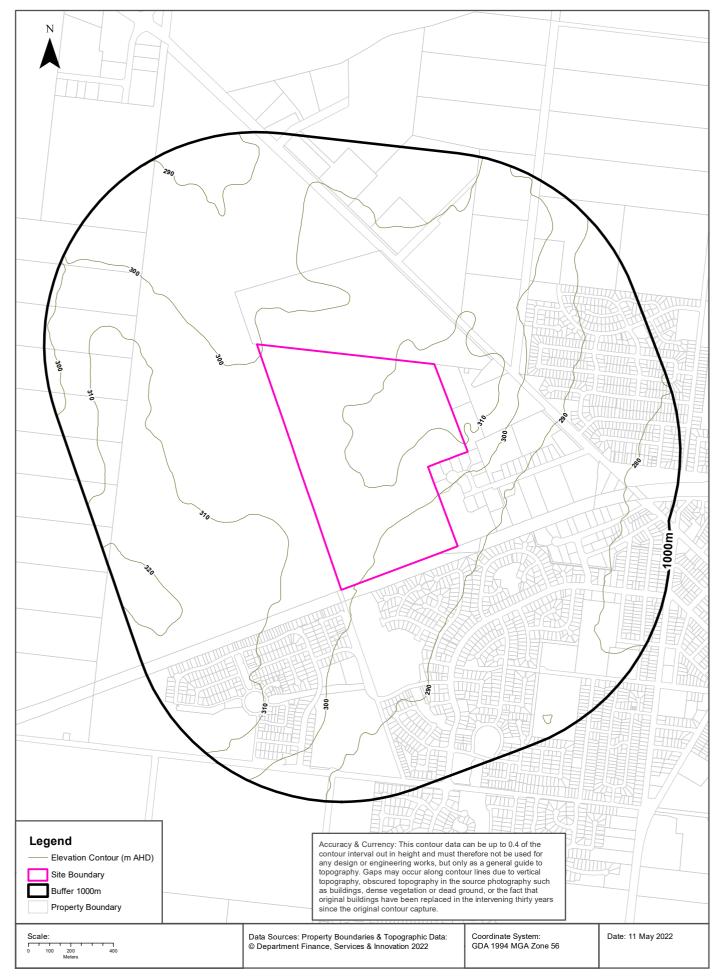
Jannali Road, Dubbo, NSW 2830

State Forest

What State Forest exist within the dataset buffer?

State Forest Number	State Forest Name	Distance	Direction
N/A	No records in buffer		

State Forest Data Source: © NSW Department of Finance, Services & Innovation (2018) Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en


National Parks and Wildlife Service Reserves

What NPWS Reserves exist within the dataset buffer?

Reserve Number	Reserve Type	Reserve Name	Gazetted Date	Distance	Direction
N/A	No records in buffer				

NPWS Data Source: © NSW Department of Finance, Services & Innovation (2018) Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en **Elevation Contours (m AHD)**

Hydrogeology & Groundwater

Jannali Road, Dubbo, NSW 2830

Hydrogeology

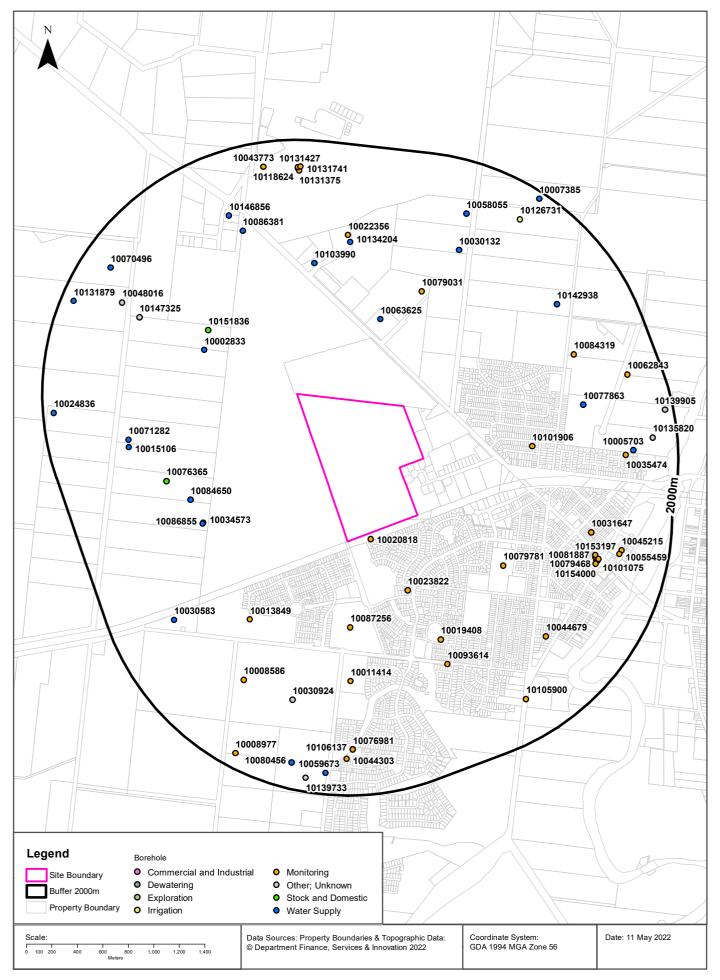
Description of aquifers within the dataset buffer:

Description	Distance	Direction
Porous, extensive highly productive aquifers	0m	On-site

Hydrogeology Map of Australia : Commonwealth of Australia (Geoscience Australia)

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Temporary Water Restriction (Botany Sands Groundwater Source) Order 2018


Temporary water restrictions relating to the Botany Sands aquifer within the dataset buffer:

Prohibition Area No.	Prohibition	Distance	Direction
N/A	No records in buffer		

Temporary Water Restriction (Botany Sands Groundwater Source) Order 2018 Data Source : NSW Department of Primary Industries

Groundwater Boreholes

Hydrogeology & Groundwater

Jannali Road, Dubbo, NSW 2830

Groundwater Boreholes

Boreholes within the dataset buffer:

NGIS Bore ID	NSW Bore ID	Bore Type	Status	Drill Date	Bore Depth (m)	Reference Elevation	Height Datum	Salinity (mg/L)	Yield (L/s)	SWL (mbgl)	Distance	Direction
10020818	GW802626	Monitoring	Functional	07/03/2005	11.00		AHD				49m	South
10023822	GW802594	Monitoring	Functional	25/01/2005	4.50		AHD				528m	South
10063625	GW057513	Water Supply	Unknown	01/09/1982	65.00		AHD	Fresh			656m	North
10087256	GW802619	Monitoring	Functional	07/03/2005	5.00		AHD				678m	South
10079781	GW802579	Monitoring	Functional	12/12/2004	3.00		AHD				783m	South East
10002833	GW061181	Water Supply	Unknown	01/09/1985	70.00		AHD	Good			804m	North West
10151836	GW806046	Stock and Domestic	Functioning	11/04/2018	88.00		AHD				858m	North West
10101906	GW802547	Monitoring	Functional	18/11/2004	12.00		AHD			9.15	860m	East
10079031	GW802629	Monitoring	Functional	07/03/2005	2.50		AHD				913m	North
10019408	GW802607	Monitoring	Functional	20/01/2006	6.00		AHD				982m	South East
10013849	GW802636	Monitoring	Abandoned	07/03/2005	1.50		AHD				984m	South West
10034573	GW800690	Water Supply	Functioning	29/01/1999	84.00		AHD	Good	0.310	12.00	1023m	West
10086855	GW062544	Water Supply	Functioning	01/02/1985	151.00		AHD				1031m	West
10103990	GW052247	Water Supply	Unknown	01/02/1981	65.00		AHD	Fresh			1038m	North
10084650	GW001249	Water Supply	Unknown	01/09/1923	40.20		AHD				1060m	West
10011414	GW802618	Monitoring	Functional	07/03/2005	6.00		AHD			3.55	1102m	South
10093614	GW802543	Monitoring	Functional	01/11/2004	6.00		AHD			3.73	1182m	South
10076365	GW049357	Stock and Domestic	Functioning	01/01/1977	39.60		AHD				1192m	West
10134204	GW021218	Water Supply	Unknown	01/02/1966	121.90		AHD	501-1000 ppm			1234m	North
10022356	GW802630	Monitoring	Functional	07/03/2005	3.00		AHD				1286m	North
10030132	GW803875	Water Supply	Functioning	01/07/1989	111.00		AHD	Good	0.250		1300m	North East
10030924	GW000171	Unknown	Unknown	01/01/1918	100.20		AHD				1320m	South
10077863	GW804542	Water Supply	Functioning	01/07/1992	80.00		AHD				1325m	East
10086381	GW057092	Water Supply	Unknown	01/04/1983	42.00		AHD	Good			1352m	North West
10008586	GW802635	Monitoring	Functional	07/03/2005	2.00		AHD				1362m	South West
10071282	GW066564	Water Supply	Functioning	18/02/1989	87.00	292.50	AHD		0.910	23.70	1369m	West
10031647	GW802578	Monitoring	Abandoned	01/11/2004	1.50		AHD				1372m	East
10147325	GW040471	Unknown	Functioning	01/01/1927	67.10		AHD				1374m	North West
10015106	GW060792	Water Supply	Unknown	01/03/1985	91.00		AHD	Fresh			1383m	West
10044679	GW802546	Monitoring	Abandoned	17/11/2004	1.00		AHD				1390m	South East

NGIS Bore ID	NSW Bore ID	Bore Type	Status	Drill Date	Bore Depth (m)	Reference Elevation	Height Datum	Salinity (mg/L)	Yield (L/s)	SWL (mbgl)	Distance	Direction
10084319	GW802548	Monitoring	Functional	09/01/2006	9.00		AHD				1396m	North East
10153197	GW805660	Monitoring	Functional	27/08/2013	3.00		AHD				1434m	East
10081887	GW802120	Monitoring	Functioning	04/06/2003	12.00		AHD				1437m	South East
10142938	GW023635	Water Supply	Unknown	01/01/1966	48.80		AHD	0-500 ppm			1447m	North East
10005183	GW802121	Monitoring	Functioning	04/06/2003	15.00		AHD				1451m	South East
10079468	GW802122	Monitoring	Functioning	03/06/2003	12.00		AHD				1451m	South East
10154000	GW805761	Monitoring	Functional	27/08/2013	2.70		AHD				1451m	South East
10101075	GW802119	Monitoring	Functioning	03/06/2003	13.80		AHD				1461m	South East
10153145	GW805662	Monitoring	Functioning	27/08/2013	10.00		AHD				1461m	South
10153930	GW805663	Monitoring	Functional	28/08/2013	11.50		AHD				1465m	South
10030583	GW805096	Water Supply	Functioning	21/10/2013	182.00		AHD		0.440		1496m	South
10146856	GW051858	Water Supply	Unknown	01/11/1979	49.40		AHD	Good			1501m	North West
10048016	GW001241	Unknown	Unknown	01/08/1923	85.30		AHD	Fresh			1549m	North West
10058055	GW063629	Water Supply	Unknown		41.50		AHD	Good			1590m	North East
10035474	GW802549	Monitoring	Functional	18/11/2004	5.50		AHD				1591m	East
10055459	GW805651	Monitoring	Functional	20/04/2011	13.40		AHD			10.83	1616m	East
10045215	GW805652	Monitoring	Functional	19/04/2011	11.90		AHD			10.45	1628m	East
10076981	GW803971	Monitoring	Functional	20/03/2009	9.80		AHD			7.31	1639m	South
10106137	GW803972	Monitoring	Functional	20/03/2009	7.50		AHD			7.27	1639m	South
10005703	GW060961	Water Supply	Functioning	01/01/1930	14.90		AHD				1649m	East
10105900	GW802545	Monitoring	Abandoned	25/11/2004	3.00		AHD				1682m	South East
10044303	GW802544	Monitoring	Abandoned	25/11/2004	3.00		AHD				1713m	South
10126731	GW003348	Irrigation	Unknown	01/07/1935	81.40		AHD	Fresh			1730m	North East
10062843	GW802602	Monitoring	Functional	25/01/2005	7.00		AHD				1734m	East
10131375	GW803571	Monitoring	Functional	08/06/2006	8.00		AHD	3445			1760m	North
10070496	GW063785	Water Supply	Unknown	01/01/1979	30.00		AHD				1767m	North West
10118624	GW803574	Monitoring	Functional	07/06/2006	8.00		AHD	3445		5.30	1776m	North
10131427	GW803573	Monitoring	Functional	08/06/2006	10.00		AHD	3445		1.20	1785m	North
10131741	GW803572	Monitoring	Functional	08/06/2006	8.00		AHD	3445		0.88	1788m	North
10080456	GW035884	Water Supply	Unknown	01/04/1973	2.20		AHD	Good			1796m	South
10043773	GW802631	Monitoring	Functional	07/03/2005	5.50		AHD				1806m	North
10135820	GW042273	Unknown	Unknown		14.90		AHD				1809m	East
10059673	GW035501	Water Supply	Unknown	01/01/1973	42.60		AHD				1832m	South
10008977	GW802634	Monitoring	Functional	07/03/2005	3.00		AHD				1886m	South West
10139733	GW042215	Unknown	Functioning		2.70		AHD				1890m	South
10131879	GW804991	Water Supply	Functioning	25/01/2013	35.50		AHD	650	1.200	11.50	1898m	North West

NGIS Bore ID	NSW Bore ID	Bore Type	Status	Drill Date	Bore Depth (m)	Reference Elevation		Salinity (mg/L)	Yield (L/s)	SWL (mbgl)	Distance	Direction
10024836	GW065788	Water Supply	Removed	29/03/1990	99.00		AHD				1913m	West
10139905	GW042274	Unknown	Functioning	01/01/1932	14.90		AHD				1936m	East
10007385	GW048877	Water Supply	Unknown	01/01/1978	45.70		AHD				1946m	North East

Borehole Data Source: Bureau of Meteorology; Water NSW. Creative Commons 3.0 $\ensuremath{\mathbb{C}}$ Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Hydrogeology & Groundwater

Jannali Road, Dubbo, NSW 2830

Driller's Logs

Drill log data relevant to the boreholes within the dataset buffer:

NGIS Bore ID	Drillers Log	Distance	Direction
10020818	0.00m-0.10m Loam, dark brown 0.10m-0.50m Loam, brown 0.50m-1.00m Sandy Clay, reddish brown, fine, light 1.00m-2.50m Sandy Clay, reddish brown 2.50m-3.50m Sandy Clay, brown 4.50m-5.00m Clay Loam, sandy, reddish brown 5.00m-5.50m Sandy Clay, reddish brown 5.50m-6.00m Sandy Clay, reddish brown, fine 6.00m-7.00m Clay, brown, light medium 7.00m-8.00m Silty Clay, brown 8.00m-9.00m Sandy Clay, brown 0.00m-10.00m Sandy Clay, brown 10.00m-11.00m Sandy Clay, brown	49m	South
10023822	0.00m-0.10m Loam, sandy, brown 0.10m-0.50m Sandy Clay, brown, coarse, <1% quartz to 5mm 0.50m-1.50m Sandy Clay, reddish brown, medium 1.50m-2.00m Sandy Clay, brown, medium 2.00m-3.00m Sandy Clay, yellowish brown, medium 3.00m-3.50m Sandy Clay, grey, medium, 20% sandsteon to 50mm 3.50m-4.50m Sandy Clay, grey, 50% coarse sandstone gravel	528m	South
10063625	0.00m-1.00m Topsoil 1.00m-16.00m Clay Sandy Coloured 16.00m-28.50m Basalt Decomposed 28.50m-41.00m Basalt Black Hard 41.00m-48.00m Clay Yellow 48.00m-65.00m Sandstone Soft Water Supply	656m	North
10087256	0.00m-0.10m Clay Loam, sandy, 20% gravel to 15mm 0.10m-0.50m Sandy Clay Loam, dark brown 0.50m-1.00m Sandy Clay, light reddish brown, 20% lime 1.00m-1.50m Sandy Clay, yellowish brown, 5% lime 1.50m-2.00m Clay Loam, sandy, dark brown, coarse 2.00m-2.50m Silty Clay, light grey, 5% lime 2.50m-4.00m Silty Clay, light grey, 5% lime 4.00m-4.50m Silty Clay, light grey, 5-10% lime 4.50m-5.00m Silty Clay, light grey, 2% lime	678m	South
10079781	0.00m-0.10m Loamy Sand, dark brown 0.10m-0.50m Clayey Sand, dark reddish brown 0.50m-1.00m Clayey Sand, brown 1.00m-2.00m Clayey Sand, yellowish brown 2.00m-2.50m Sandy Loam, yellowish brown 2.50m-2.90m Sandy Clay Loam, reddish brown 2.90m-3.00m Rock	783m	South East
10002833	0.00m-1.00m Topsoil 1.00m-18.29m Clay Yellow 18.29m-30.48m Clay 30.48m-68.31m Clay Grey 68.31m-70.00m Gravel Water Supply	804m	North West
10101906	0.00m-0.10m Sandy Clay Loam, reddish brown 0.10m-0.50m Clay, dark reddish brown, medium, trace sand 0.50m-1.00m Clay, reddish brown, medium, trace of fine sand 1.00m-1.50m Clay, reddish brown, medium 1.50m-2.50m Clay, treddish brown, medium heavy 3.00m-3.50m Clay, reddish brown, medium heavy 3.00m-3.50m Clay, the tredium heavy 4.50m-5.00m Clay, brown, medium heavy 4.50m-5.00m Clay, brown, medium heavy 5.00m-5.50m Clay, brown, medium, 10% orange mottles 5.00m-5.50m Clay, light brown, light medium 5.50m-6.00m Clay, light brown, light medium, red & light grey mottles 6.00m-7.00m Clay, brown, light medium, 10% red mottles 7.00m 8.00m Sandy Clay, orangish brown, <5% fine sandstone 8.00m-10.00m Sandy Clay, orangish brown, 10% grey mottles 10.00m-11.00m Clay, grey, light medium 11.00m-12.00m Clay, light grey, light medium	860m	East

NGIS Bore ID	Drillers Log	Distance	Direction
10079031	0.00m-0.10m Sandy Clay Loam, red, 1% quartz to 5mm 0.10m-0.50m Clay, red, light medium, trace of fine sand, 1% gravel 0.50m-1.00m Clay, red, light medium, trace of fine sand, 1% quartz 1.00m-1.50m Sandy Clay, reddish brown 1.50m-2.00m Clay, reddish brown, medium, trace of fine sand 2.00m-2.40m Clay, reddishb brown, medium heavy 2.40m-2.50m Rock	913m	North
10019408	0.00m-0.10m Sandy Clay Loam, gryeish brown, light 0.10m-1.00m Loam, sandy, greyish brown 1.00m-2.00m Sandy Clay, greyish brown 2.00m-2.40m Sandy Clay, reddish brown 2.40m-3.00m Sandy Clay, greyish brown 3.00m-3.50m Sandy Clay, reddish brown 3.50m-4.00m Sandy clay, yellowish grey 4.00m-6.00m Silty Clay, grey	982m	South East
10013849	0.00m-0.10m Clay Loam, sandy, brown 0.10m-0.50m Clay, reddish brown, light medium 0.50m-1.00m Clay, dark greyish brown, light medium 1.00m-1.40m Sandy Clay, 20% basalt gravel, greyish brown 1.40m-1.50m Basalt	984m	South West
10034573	0.00m-1.00m Topsoil 1.00m-30.00m Clay, red and yellow 30.00m-84.00m Basalt, black	1023m	West
10086855	0.00m-1.00m Topsoil 0.00m-1.00m Boulders Basalt 1.00m-116.00m Basalt Solid 116.00m-151.00m Volcanic Ash	1031m	West
10103990	0.00m-1.00m Topsoil 1.00m-12.00m Clay Red Grey 12.00m-33.55m Basalt Very Hard Weathered Fresh 33.55m-65.00m Sandstone Soft Water Supply	1038m	North
10084650	0.00m-5.49m Clay 5.49m-9.14m Stones Gravel 9.14m-15.24m Gravel 15.24m-31.09m Clay 31.09m-32.00m Boulders Basalt 32.00m-40.23m Rock	1060m	West
10011414	0.00m-0.10m Loam, sandy, 1% quartz to 10mm, dark reddish brown 0.10m-0.50m Sandy Clay Loam, brown, light 0.50m-2.00m Clay, light medium, reddish brown 2.00m-4.00m Sandy Clay, reddish brown 4.00m-4.50m Sandy Clay, brown 4.50m-5.00m Clay, ligth medium, brown 5.00m-5.50m Clay Loam, sandy, brown 5.50m-6.00m Clay Loam, sand, brown, 5% sandstone to10mm	1102m	South
10093614	0.00m-0.10m Sandy Clay Loam, dark reddish brown 0.10m-0.50m Sandy Clay, reddish brown 0.50m-1.00m Clay, reddish brown, medium 1.00m-1.50m Clay, light red, medium, 1% basalt gravel to 5mm 1.50m-2.00m Clay, light red, medium, trace fine sand 2.00m-2.50m Clay, brown, medium 2.50m-3.00m Sandy Clay, brown, 5% red mottles 3.00m-3.50m Sandy Clay, brown, 5% basalt gravel to 10mm 3.50m-4.00m Sandy Clay, brown, 5% grey mottles 4.00m-4.50m Sandy Clay, brown, 5% grey mottles 4.50m-5.50m Sandy Clay, brown 5.00m-5.50m Sandy Clay, greyish brown, 2% dark sandstone gravel 5.50m-6.00m Sandy Clay, light grey	1182m	South
10134204	0.00m-3.05m Clay Red 3.05m-19.81m Clay Coloured 19.81m-25.91m Boulders Basaltic Clay 25.91m-42.67m Basalt 42.67m-45.11m Clay Grey 45.11m-46.94m Sand Gravel Water Supply 46.94m-48.77m Clay Black Shale Water Supply 49.99m-57.91m Clay Grey Water Bearing Water Supply 99.99m-57.91m Clay Grey Water Bearing Water Supply 60.66m-71.63m Shale Grey Rock Water Supply 60.66m-71.63m Shale Grey Rock Water Supply 86.26m-96.93m Shale Grey Gritty Bands Water Supply 96.93m-103.63m Shale Grey Water Bearing Water Supply 103.63m-121.92m Shale Puggy Water Supply	1234m	North
10022356	0.00m-0.10m Clay Loam, dark brown 0.10m-0.50m Clay, dark reddish brown, medium 0.50m-1.00m Clay, dark reddish brown, medium heavy 1.00m-1.50m Clay, brown, medium heavy 1.50m-2.90m Clay, reddish brown, medium heavy 2.90m-3.00m Rock	1286m	North

NGIS Bore ID	Drillers Log	Distance	Direction
10030924	0.00m-9.75m Clay 9.75m-21.34m Sandstone 21.34m-22.86m Sandstone 21.34m-22.86m Ironstone Bands 22.86m-31.09m Sandstone Hard Bands 31.09m-37.19m Shale Black Sandstone 37.19m-49.38m Ironstone Bands 49.38m-55.47m Shale Black 55.47m-61.26m Rock Slatey 61.26m-63.70m Sandstone 63.70m-65.84m Rock Hard 65.84m-71.93m Sandstone 65.84m-71.93m Ironstone Bands 71.93m-92.66m Rock Slatey 92.66m-100.28m Basalt	1320m	South
10086381	0.00m-1.00m Topsoil 1.00m-15.00m Clay Red 15.00m-19.00m Clay Yellow Sandy 19.00m-20.00m Sandstone Hard 20.00m-24.75m Clay White 20.00m-24.75m Sandstone Bands 24.75m-25.00m Sandstone Hard 25.00m-29.00m Clay White 25.00m-29.00m Sandstone Bands 29.00m-30.00m Sandstone 30.00m-38.00m Sandstone Pure 38.00m-39.00m Sandstone Water Supply 39.00m-42.00m Shale Grey	1352m	North West
10008586	0.00m-0.10m Loam, brown, sandy 0.10m-1.00m Sandy Clay, brown 1.00m-1.50m Sandy Clay, reddish brown 1.50m-1.90m Sandy Clay, 60% sandstone to 50mm, greyish brown 1.90m-2.00m Sandstone	1362m	South West
10071282	0.00m-2.00m Topsoil 2.00m-4.00m Clay, brown 4.00m-22.00m Clay, red/brown 22.00m-23.00m Shale, weathered, yellow 23.00m-24.00m Shale, weathered, light white/yellow 24.00m-35.00m Mudstone, grey 35.00m-37.00m Clay, brown 37.00m-48.00m Mudstone, grey 48.00m-53.00m Sandstone / Mudstone, grey 53.00m-77.00m Mudstone, grey 77.00m-84.00m Sandstone 84.00m-87.00m Shale, red/brown	1369m	West
10031647	0.00m-0.10m Sandy Clay Loam, dark reddish brown 0.10m-0.50m Sandy Clay, reddish brown 0.50m-1.00m Clay, reddish brown, light medium 1.00m-1.40m Sandy Clay, greyish brown, 30% ground basalt 1.40m-1.50m Basalt	1372m	East
10015106	0.00m-1.00m Topsoil 1.00m-40.00m Clay 4.00m-10.00m Basalt Weathered 10.00m-26.00m Shale White Grey Sandy 26.00m-40.00m Shale Coarse Sandy Water Supply 40.00m-42.00m Shale Soft 42.00m-50.00m Siltstone Black Oily Shale 50.00m-57.00m Gravel Waterworn Rounded 57.00m-57.00m Gravel Waterworn Rounded 57.00m-57.00m Shale Black Water Supply 74.00m-74.00m Shale Black Water Supply 74.00m-82.00m Shale Black Water Supply 82.00m-91.00m Rhyolite Weathered	1383m	West
10044679	0.00m-0.10m Sandy Loam, dark brown 0.10m-0.50m Sandy Clay, reddish brown, 80% basalt gravel 0.50m-0.70m Weathered Rock 0.70m-1.00m Rock	1390m	South East

NGIS Bore ID	Drillers Log	Distance	Direction
10084319	0.00m-0.10m Clay Loam, reddish brown 0.10m-0.50m Clay, reddish brown, light medium 0.50m-1.50m Clay, reddish brown, medium 1.50m-2.00m Clay, reddish brown, medium 2.00m-2.50m Sandy Clay, brown 2.50m-3.00m Sandy Clay, brown, 10% yellow mottles 3.50m-4.00m Sandy Clay, reddish brown, 40% red mottles 3.50m-4.00m Sandy Clay, yellowish brown 4.00m-5.00m Sandy Clay, uplowish brown 5.00m-5.50m Clay, reddish brown, light 5.50m-6.00m Sandy Clay, brown, 10% yellow mottles 6.00m-7.00m Sandy Clay, brown, 5% ground gravel to 5mm 7.00m-9.00m Rock	1396m	North East
10081887	0.00m-1.00m Fill 1.00m-2.00m Clay 2.00m-8.00m Basalt, weathered basalt 8.00m-12.00m Sandstone	1437m	South East
10142938	0.00m-5.49m Clay 5.49m-24.38m Clay Sandy 24.38m-27.13m Clay 27.13m-34.14m Shale 34.14m-34.75m Sandstone 34.75m-35.97m Sandstone Water Bearing Water Supply 35.97m-40.84m Sandstone 40.84m-47.24m Shale 47.24m-48.77m Sandstone	1447m	North East
10005183	0.00m-5.50m Fill 5.50m-7.50m Basalt 7.50m-15.00m Sandstone	1451m	South East
10079468	0.00m-2.50m Fill 2.50m-7.00m Basalt 7.00m-12.00m Sandstone	1451m	South East
10101075	0.00m-4.00m Fill 4.00m-7.00m Basalt 7.00m-13.50m Sandstone	1461m	South East
10030583	0.00m-0.50m Topsoil 0.50m-8.50m Clay 8.50m-35.00m Basalt; broken 35.00m-97.00m Shale; grey 97.00m-155.00m Granite; grey 155.00m-157.50m Granite; green 157.50m-158.00m Granite; green, water bearing 158.00m-165.50m Granite; red 165.50m-167.20m Granite; red, water bearing 167.20m-176.00m Granite; grey 176.00m-177.00m Granite; grey, fractured, water bearing 177.00m-182.00m Granite; grey	1496m	South West
10146856	0.00m-1.00m Topsoil 1.00m-15.00m Clay 15.00m-19.00m Clay Red 19.00m-29.00m Sandstone Hard 29.00m-29.50m Sandstone Water Bearing 29.50m-39.00m Sandstone Water Bearing 39.00m-41.00m Shale 41.00m-49.37m Shale Sandstone Water Supply	1501m	North West
10048016	0.00m-12.19m Clay Yellow Sticky 12.19m-19.81m Sandstone 19.81m-27.43m Sandstone 19.81m-27.43m Clay Seams 27.43m-37.19m Sand Rock Hard 37.19m-46.33m Rock 46.33m-50.90m Sandstone 50.90m-59.44m Shale 59.44m-62.48m Ironstone Rock Seams 62.48m-71.63m Sand Rock 71.63m-74.68m Shale 74.68m-79.25m Sandstone Water Supply 79.25m-81.08m Shale Grey 81.08m-85.34m Rock	1549m	North West
10058055	0.00m-1.00m Topsoil 1.00m-41.45m Shale Water Supply	1590m	North East

NGIS Bore ID	Drillers Log	Distance	Direction
10035474	0.00m-0.10m Clay Loam, dark brown 0.10m-0.50m Clay, dark reddish brown, medium 0.50m-1.00m Clay, dark reddish brown, medium heavy 1.00m-1.50m Clay, brown, medium heavy 1.50m-2.00m Clay, reddish brown, medium heavy 2.00m-2.50m Clay, reddish brown, medium heavy, brown mottles 2.50m-3.50m Clay, reddish brown, medium heavy 3.50m-4.50m Sandy Clay, brown, light 4.50m-5.00m Clay, reddish brown, light medium, orange mottles 5.00m-5.40m Clay, brown, light medium, basalt gravel to 40mm 5.40m-6.50m Basalt	1591m	East
10055459	 0.00m-0.20m Sand, Clayey; red-brown, damp, loose, fine, poorly sorted with rounded fine-coarse quartz gravels. 0.20m-0.30m Clay; brown, damp, medium stiff, plastic, homogenous 0.30m-1.00m Clay, Sandy; red-brown, damp, medium stiff, plastic, homogenous 1.00m-1.60m Clay, Sandy; red-brown with grey mottling, damp, medium stiff, plastic, homogenous 3.20m-9.00m Silt, Clayey; brown-grey, dry, non plastic, soft, homogenous 9.00m-10.00m Silt, Clayey; brown-grey, damp, low plasticity, soft, homogenous 10.00m-12.00m Silt, Clayey; brown-grey, noist, low plasticity, soft, homogenous 	1616m	East
10045215	 0.00m-0.15m Sand, Clayey; red-brown, damp, loose, fine well sorted, 0.05m of bitumen @ surface 0.15m-0.25m Sand, Clayey; red-brown, damp, loose, fine, poorly sorted with rounded fine to coarse quartz gravels 0.25m-0.30m Clay; brown, damp, stiff, medium plasticity, homogenous 0.30m-0.50m Sand, Clayey; yellow-brown, damp, loose, poorly sorted with rounded, fine to coarse quartz gravels 0.50m-1.00m Clay, Sandy; red-brown, damp, stiff, high plasticity, homogenous 1.00m-1.80m Clay, Sandy; red-brown, damp, stiff, high plasticity, homogenous 1.80m-3.00m Silt, Clayey; grey-brown, damp, very soft, non plastic, homogenous 3.00m-8.00m Silt, Clayey; grey-brown, damp, very soft, low plasticity, homogenous 8.00m-9.00m Silt, Clayey; grey-brown, moist, very soft, low plasticity, homogenous 9.00m-10.50m Silt, Clayey; dark brown, sasturated, soft, low plasticity, homogenous 	1628m	East
10076981	0.00m-4.70m Sandy Clay, brown 4.70m-7.80m Sand, silty, grey brown 7.80m-9.80m Silty Clay, with fine Gravel, grey brown	1639m	South
10106137	0.00m-3.20m Sandy Clay, yellow brown 3.20m-7.00m Sandy Clay/Silt, yellow 7.00m-8.50m Sandy Clay, black/dark grey	1639m	South
10105900	0.00m-0.10m Sandy Clay Loam, greyish brown, 10% sandstone 0.10m-0.50m Sandy Loam, brown, 5% sandstone gravel to 20mm 0.50m-1.00m Clayey Sand, light brown 1.00m-1.50m Sandy Clay Loam, light reddish brown 1.50m-2.00m Sandy Clay, light brown 2.00m-2.50m Sandy Clay, greyish brown 2.50m-3.00m Sandy Clay, grey	1682m	South East
10044303	0.00m-0.10m Sandy Loam, reddish brown, fine 0.10m-0.50m Sandy Clay, yellow, 10% sandstone gravel to 15mm 0.50m-1.00m Sandy Clay, yellow, 5% sandstone gravel to 5mm 1.00m-1.50m Sandy Clay Loam, yellow, grey & orange mottles 1.50m-2.50m Sandy Clay Loam, grey, orange mottles 2.50m-3.00m Weathered rock	1713m	South
10126731	0.00m-1.83m Loam Sandy 1.83m-5.49m Conglomerate 5.49m-39.01m Clay Sticky 39.01m-75.90m Shale 75.90m-76.35m Sandstone Water Supply 76.35m-81.38m Shale	1730m	North East
10062843	0.00m-0.10m Sandy clay Loam, reddish brown 0.10m-1.00m Clay, light medium, reddish brown 1.00m-2.00m Sandy Clay, red 2.00m-3.00m Sandy Clay, brown 3.00m-3.50m sandy Clay, brown, 80% basalt gravel to 80mm 3.50m-4.50m Sandy Clay, prown, 80% basalt gravel to 80mm 4.50m-5.00m Sandy Clay, yellow brown 5.00m-5.50m Sandy Clay, brown 5.50m-6.00m Sandy Clay, brown, 30% basalt gravel 6.00m-6.90m Sandy Clay, 30% basalt & 5% quartz to 10mm 6.90m-7.00m Basalt	1734m	East
10131375	0.00m-0.90m Clay, red-brown, hard, dry, low plasticity 0.90m-3.90m Clay, red-brown, hard, dry, no odour, low plasticity 3.90m-4.90m Clay, brown, stiff to hard, trace gravel & clay, moist 4.90m-8.00m Clay, brown mottled white, stiff, moist	1760m	North

NGIS Bore ID	Drillers Log	Distance	Direction
10118624	0.00m-1.00m Sandy Clay, fine, dark red-brown, silty, dry 1.00m-1.90m Sandy Clay, as above, becoming more sandy 1.90m-3.00m Clay, brown, soft-firm, plastic, fine 3.00m-3.90m Clay, brown, firm, plastic, moist, gravelly 3.90m-4.90m Clay, as above, trace gravel, less moist 4.90m-5.90m Clay, brown & grey, firm-stiff, moist, faint hydrocarbon odour 5.90m-6.90m clay, brown & white, firm gravelly, dry-moist, faint odour 6.90m-8.00m Clay, grey/white, moist, firm, plastic, no odour	1776m	North
10131427	0.00m-0.50m Clay, silty/sandy, red, firm-stiff, no odour 0.50m-1.90m Clay, silt, red, soft-firm 1.90m-3.00m Clay, light brown, dry, firm-stiff, large gravels rounded 3.00m-3.90m Clay, light brown, moist-dry, firm, no odour 3.90m-4.90m Clay, light brown, fine, sandy, trace gravels, small 4.90m-5.00m Clay, light brown, silty, dry-moist, soft-firm 5.00m-10.00m Clay, light brown, moist to wet, soft-firm	1785m	North
10131741	0.00m-0.50m Sand, clayey, fine, red-brown, dry some asphalt 0.50m-1.90m Clay, pale red-brown, soft, low plasticity 1.90m-6.90m Clay, brown, soft, faint hydrocarbon odour 6.90m-8.00m Clay, pale brown mottled white, soft, moist	1788m	North
10080456	0.00m-1.21m Silt 1.21m-1.98m Silt Sand 1.98m-2.28m Aquifer Water Supply	1796m	South
10043773	0.00m-0.10m Loam, dark brown 0.10m-0.50m Sandy Clay Loam, dark reddish brown 0.50m-1.00m Clay, reddish brown, light medium 1.00m-1.50m Clay, brown, light medium, 2% lime 1.50m-2.50m Sandy Clay, reddish brown, 1% lime 2.50m-3.00m Sandy Clay, yellowish brown, 2% lime 3.00m-3.50m Sandy Clay, grey, 5% lime 3.50m-4.00m Sandy Clay, grey, 2% lime 4.00m-4.50m Sandy Clay, grey, <1% lime 4.50m-5.00m Sandy Clay, yellowish brown 5.00m-5.50m Sandy Clay, greyish brown, 20% gravel	1806m	North
10059673	0.00m-1.52m Topsoil 1.52m-9.14m Clay 9.14m-27.43m Clay 27.43m-66.57m Clay Gritty 36.57m-41.14m Sandstone 41.14m-42.67m Sandstone Hard	1832m	South
10008977	0.00m-0.10m Loam, sandy, dark brown 0.10m-0.50m Loam, sandy, brown 0.50m-1.00m Sandy Clay, reddish brown, light 1.00m-1.50m Sandy Clay Loam, reddish brown 1.50m-2.50m Sandy Clay, grey 2.50m-3.00m Sandy Clay, gravelly, yellowish brown	1886m	South West
10131879	0.00m-5.00m Clay, red 5.00m-5.10m Sandstone, weathered, coarse 5.10m-5.20m Ironstone 5.20m-5.50m Clay, grey 5.50m-25.00m Clay, red 25.00m-32.50m Quartz & Gravels, water bearing 32.50m-35.50m Clay, red	1898m	North West
10024836	0.00m-6.20m Brown Soil & Clay 6.20m-18.00m Red Sand & Clay 18.00m-21.00m Yellow Sand & Clay 21.00m-26.00m Red Sand & Clay 26.00m-41.00m Yellow Sand & Clay 41.00m-53.00m Siltstone 53.00m-61.00m Weathered Basalt 61.00m-99.00m Basalt	1913m	West
10007385	0.00m-0.61m Topsoil 0.61m-2.44m Clay 2.44m-9.14m Clay Red 9.14m-15.24m Clay Yellow 15.24m-22.86m Clay Sandy 22.86m-30.48m Clay Cream Sandy 30.48m-34.14m Clay White Yellow 34.14m-39.62m Clay Yellow Gravel 39.62m-45.11m Sandstone Water Supply 45.11m-45.72m Shale	1946m	North East

Drill Log Data Source: Bureau of Meteorology; Water NSW. Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Geology Jannali Road, Dubbo, NSW 2830

Geology

Jannali Road, Dubbo, NSW 2830

Geological Units

What are the Geological Units within the dataset buffer?

Unit Code	Unit Name	Description	Unit Stratigraphy	Age	Dominant Lithology	Distance
Jinp	Pilliga Sandstone	Medium- to very coarse- grained, well sorted, angular to subangular quartzose sandstone and conglomerate. Minor interbeds of mudstone, siltstone and fine-grained sandstone and coal. Common carbonaceous fragments and iron staining. Rare lithic fragments.	/Injune Creek Group//Pilliga Sandstone//	Callovian (base) to Kimmeridgian (top)	Sandstone	Om
NMdud_a	Dubbo Volcanics - alkaline basalt	Alkaline basalt.	/Dubbo Volcanic Complex//Dubbo Volcanics/Dubbo Volcanics - alkaline basalt/	Burdigalian (base) to Serravallian (top)	Basalt	0m

Linear Geological Structures

What are the Dyke, Sill, Fracture, Lineament and Vein trendlines within the dataset buffer?

Map ID	Feature Description	Map Sheet Name	Distance
No Features			

What are the Faults, Shear zones or Schist zones, Intrusive boundaries & Marker beds within the dataset buffer?

Map ID	Boundary Type	Description	Map Sheet Name	Distance
No Features				

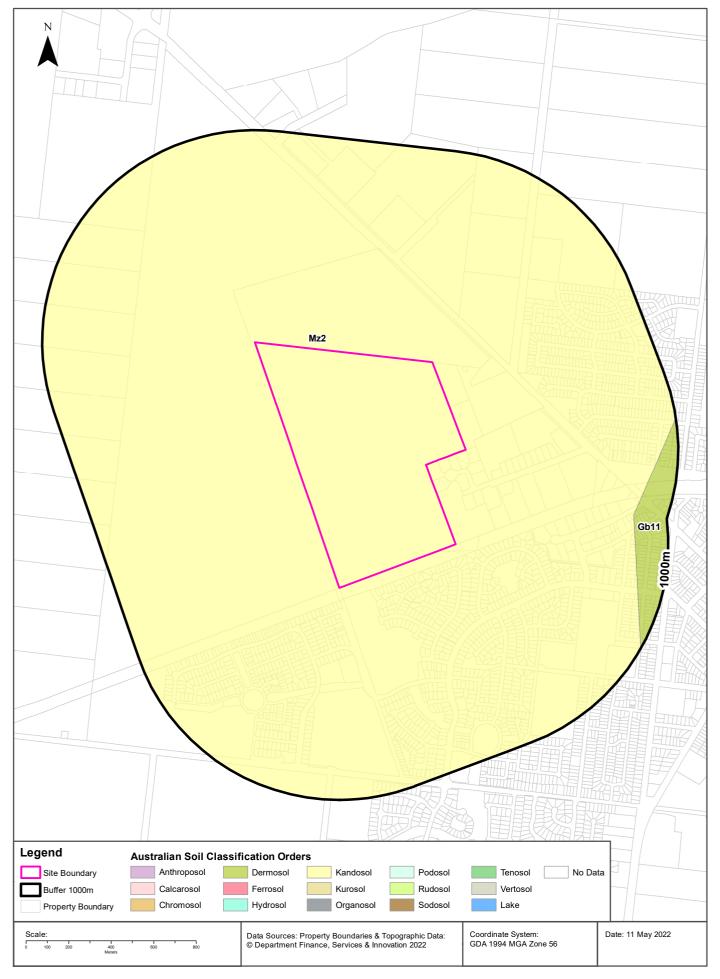
Geological Data Source: Statewide Seamless Geology v2.1, Department of Regional NSW

Creative Commons 4.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/4.0/au/deed.en

Naturally Occurring Asbestos Potential

Jannali Road, Dubbo, NSW 2830

Naturally Occurring Asbestos Potential


Naturally Occurring Asbestos Potential within the dataset buffer:

Potential	Sym	Strat Name	Group	Formation	Scale	Min Age	Max Age	Rock Type	Dom Lith	Description	Dist	Dir
No records in buffer												

Naturally Occurring Asbestos Potential Data Source: © State of New South Wales through NSW Department of Industry, Resources & Energy

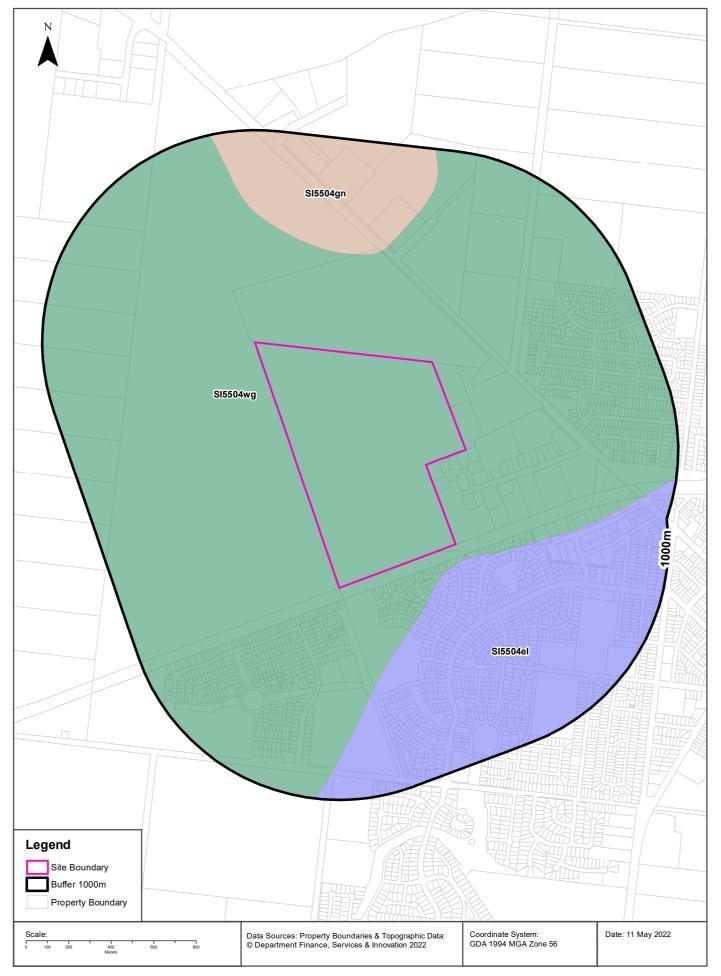
Atlas of Australian Soils

Soils

Jannali Road, Dubbo, NSW 2830

Atlas of Australian Soils

Soil mapping units and Australian Soil Classification orders within the dataset buffer:


Map Unit Code	Soil Order	Map Unit Description	Distance	Direction
Mz2	Kandosol	Flat to gently undulating (?terrace remnants): red earths (Gn2.11 and Gn2.12) on flat to gently undu- lating areas. Associated are red friable earths (Gn3.12 and Gn3.13) in the vicinity of basalt-strewn ridges and knolls some of which have cracking clays such as (Ug5.32) on their crests and slopes; some (Dr2.33) soils; and some low gravelly hillocks of unit Ms1 soils.	Om	On-site
Gb11	Dermosol	River terraces and flood-plains: chief soils are dark porous loamy soils (Um6.11) and, less commonly, cracking clays (Ug5.16) on the younger terraces, with various (Um) and (Uc) soils on the flood-plains. Associated are higher terrace remnants with a variety of soils including (Dr2.22), (Dr3.43), (Dy3.4), (Gn3 . 12), and (Gn2. 15) soils. Data are limited.	840m	East

Atlas of Australian Soils Data Source: CSIRO

Creative Commons 4.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/4.0/au/deed.en

Soil Landscapes of Central and Eastern NSW

Soils

Jannali Road, Dubbo, NSW 2830

Soil Landscapes of Central and Eastern NSW

Soil Landscapes of Central and Eastern NSW within the dataset buffer:

Soil Code	Name	Distance	Direction
<u>SI5504wg</u>	Wongarbon	0m	On-site
<u>SI5504el</u>	Eulomogo	82m	South East
<u>SI5504gn</u>	Goonoo	461m	North

Soil Landscapes of Central and Eastern NSW: NSW Department of Planning, Industry and Environment

Creative Commons 4.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/4.0/au/deed.en

Acid Sulfate Soils

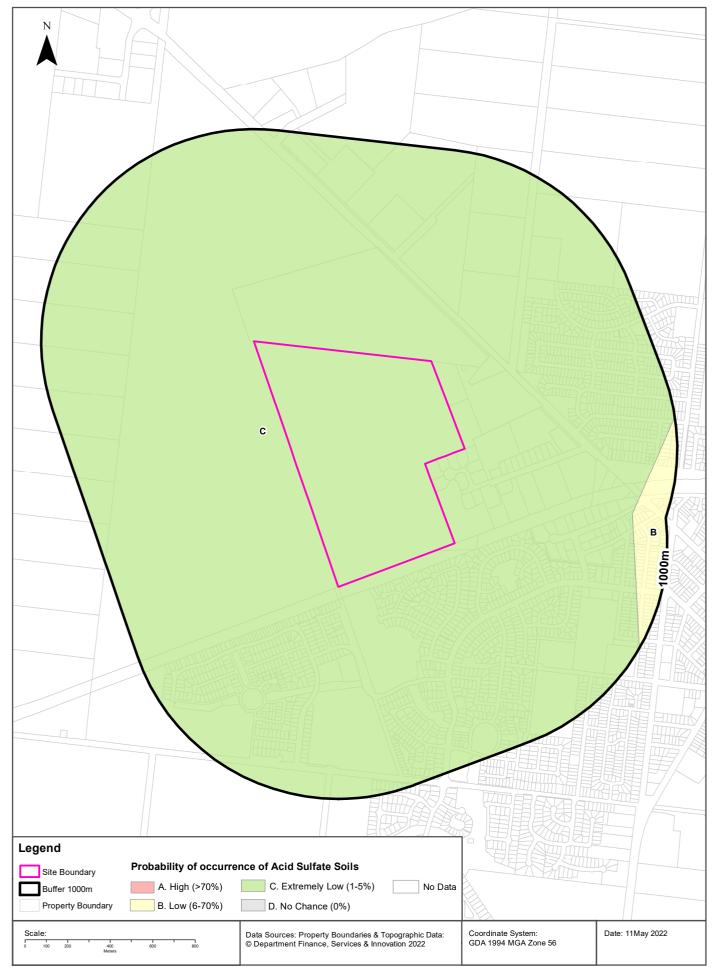
Jannali Road, Dubbo, NSW 2830

Environmental Planning Instrument - Acid Sulfate Soils

What is the on-site Acid Sulfate Soil Plan Class that presents the largest environmental risk?

Soil Class	Description	EPI Name
N/A		

If the on-site Soil Class is 5, what other soil classes exist within 500m?


Soil Class	Description	EPI Name	Distance	Direction
N/A				

NSW Crown Copyright - Planning and Environment

Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

Atlas of Australian Acid Sulfate Soils

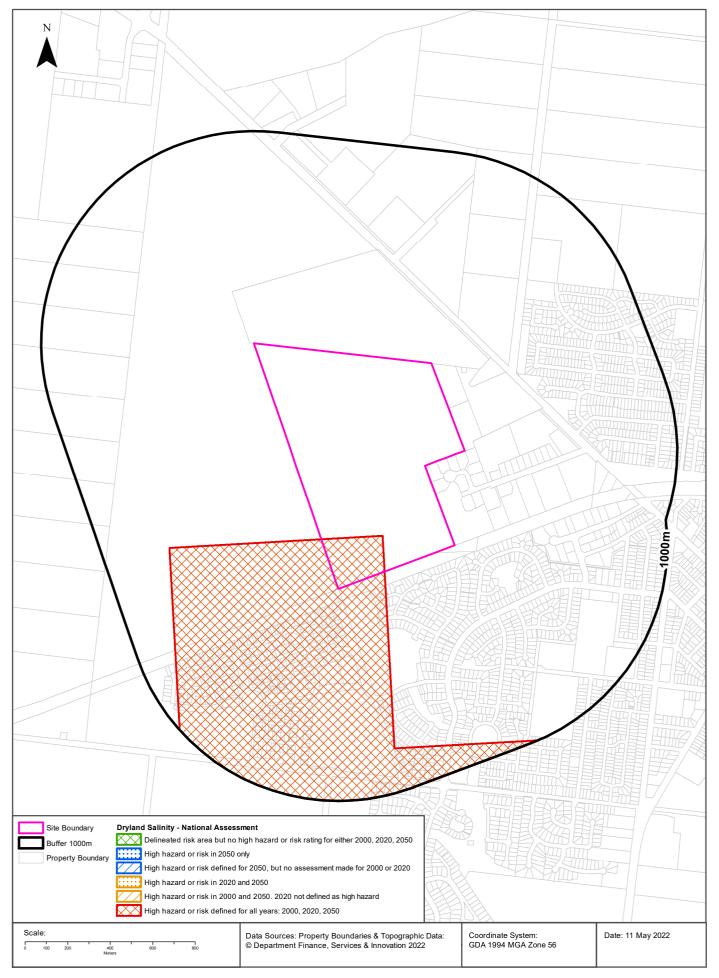
Acid Sulfate Soils

Jannali Road, Dubbo, NSW 2830

Atlas of Australian Acid Sulfate Soils

Atlas of Australian Acid Sulfate Soil categories within the dataset buffer:

Class	Description	Distance	Direction
С	Extremely low probability of occurrence. 1-5% chance of occurrence with occurrences in small localised areas.	0m	On-site
В	Low Probability of occurrence. 6-70% chance of occurrence.	839m	East


Atlas of Australian Acid Sulfate Soils Data Source: CSIRO

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Dryland Salinity

Jannali Road, Dubbo, NSW 2830

Dryland Salinity

Jannali Road, Dubbo, NSW 2830

Dryland Salinity - National Assessment

Is there Dryland Salinity - National Assessment data onsite?

Yes

Is there Dryland Salinity - National Assessment data within the dataset buffer?

Yes

What Dryland Salinity assessments are given?

Assessment 2000	Assessment 2020	Assessment 2050	Distance	Direction
High hazard or risk	High hazard or risk	High hazard or risk	0m	On-site

Dryland Salinity Data Source : National Land and Water Resources Audit

The Commonwealth and all suppliers of source data used to derive the maps of "Australia, Forecast Areas Containing Land of High Hazard or Risk of Dryland Salinity from 2000 to 2050" do not warrant the accuracy or completeness of information in this product. Any person using or relying upon such information does so on the basis that the Commonwealth and data suppliers shall bear no responsibility or liability whatsoever for any errors, faults, defects or omissions in the information. Any persons using this information do so at their own risk.

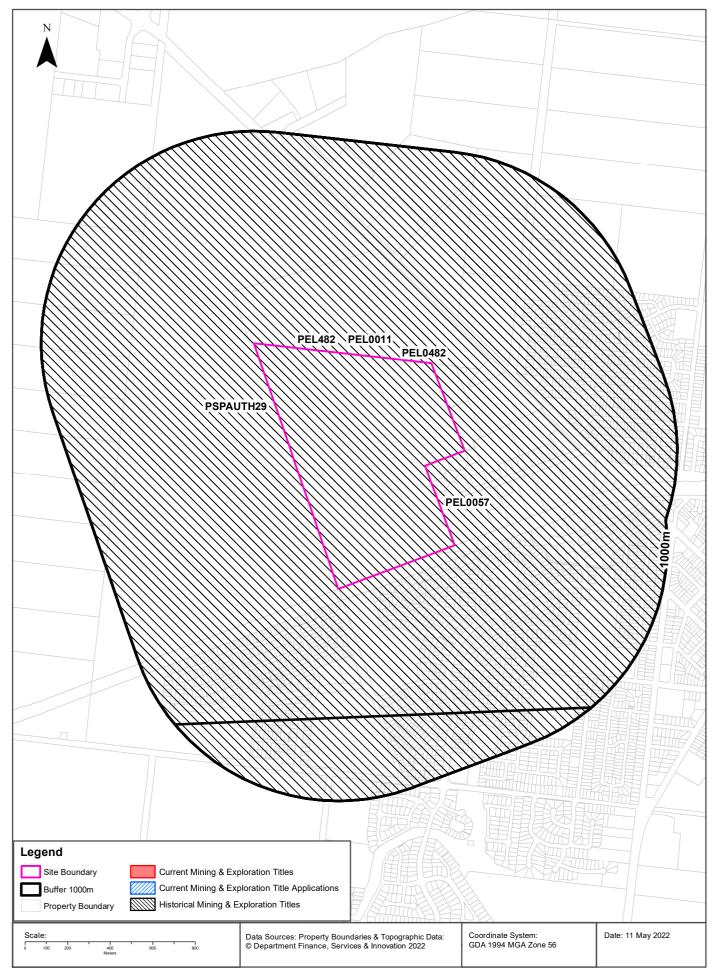
In many cases where a high risk is indicated, less than 100% of the area will have a high hazard or risk.

Mining

Jannali Road, Dubbo, NSW 2830

Mining Subsidence Districts

Mining Subsidence Districts within the dataset buffer:


District	Distance	Direction
There are no Mining Subsidence Districts within the report buffer		

Mining Subsidence District Data Source: © Land and Property Information (2016) Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Mining & Exploration Titles

Jannali Road, Dubbo, NSW 2830

Mining

Jannali Road, Dubbo, NSW 2830

Current Mining & Exploration Titles

Current Mining & Exploration Titles within the dataset buffer:

Title Ref	Holder	Grant Date	Expiry Date	Last Renewed	Operation	Resource	Minerals	Dist	Dir
N/A	No records in buffer								

Current Mining & Exploration Titles Data Source: © State of New South Wales through NSW Department of Industry

Current Mining & Exploration Title Applications

Current Mining & Exploration Title Applications within the dataset buffer:

Application Ref	Applicant	Application Date	Operation	Resource	Minerals	Dist	Dir
N/A	No records in buffer						

Current Mining & Exploration Title Applications Data Source: © State of New South Wales through NSW Department of Industry

Mining

Jannali Road, Dubbo, NSW 2830

Historical Mining & Exploration Titles

Historical Mining & Exploration Titles within the dataset buffer:

Title Ref	Holder	Start Date	End Date	Resource	Minerals	Dist	Dir
PEL482	SURAT RESOURCES PTY LIMITED			MINERALS		0m	On-site
PEL0057	L H SMART OIL EXPLORATION CO. LTD			PETROLEUM	Petroleum	0m	On-site
PEL0011	METALLIC RESOURCES PTY LIMITED	24/05/1995	21/08/1996	PETROLEUM	Petroleum	0m	On-site
PSPAUTH29	EAST COAST POWER PTY LTD	23/12/2008	23/12/2009	PETROLEUM	Petroleum	0m	On-site
PEL0482	SURAT RESOURCES PTY LTD	8/04/2010	20/05/2011	PETROLEUM	Petroleum	0m	On-site

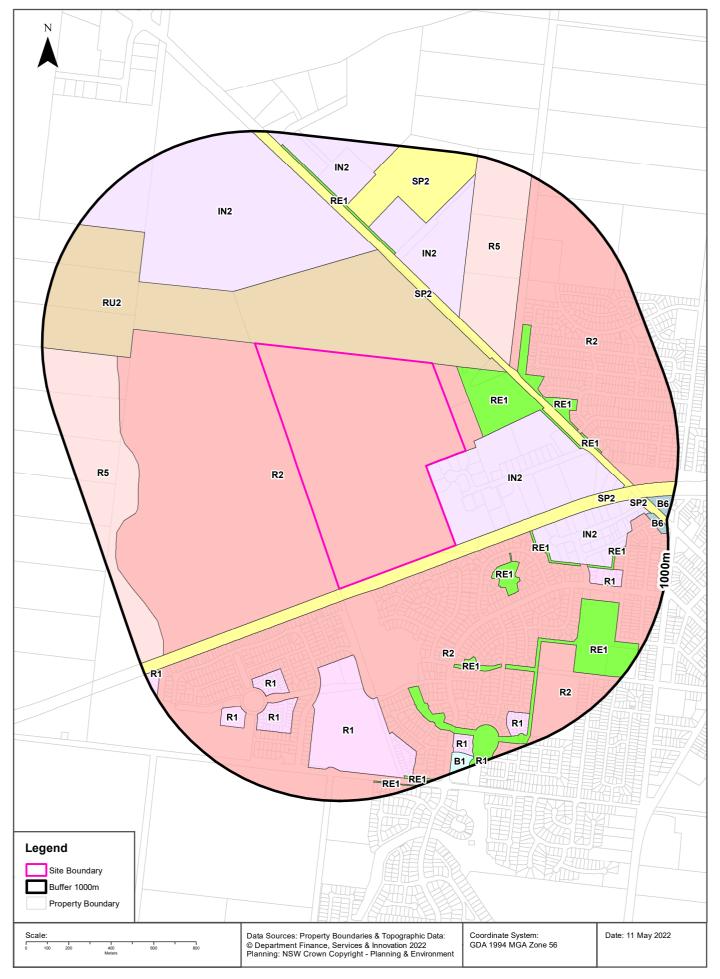
Historical Mining & Exploration Titles Data Source: © State of New South Wales through NSW Department of Industry

State Environmental Planning Policy

Jannali Road, Dubbo, NSW 2830

State Significant Precincts

What SEPP State Significant Precincts exist within the dataset buffer?


Map Id	Precinct	EPI Name	Published Date	Commenced Date	Currency Date	Amendment	Distance	Direction
N/A	No records in buffer							

State Environment Planning Policy Data Source: NSW Crown Copyright - Planning & Environment Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

EPI Planning Zones

Jannali Road, Dubbo, NSW 2830

Environmental Planning Instrument

Jannali Road, Dubbo, NSW 2830

Land Zoning

What EPI Land Zones exist within the dataset buffer?

Zone	Description	Purpose	EPI Name	Published Date	Commenced Date	Currency Date	Amendment	Distance	Direction
R2	Low Density Residential		Dubbo Local Environmental Plan 2011	11/11/2011	11/11/2011	09/07/2021		0m	On-site
RU2	Rural Landscape		Dubbo Local Environmental Plan 2011	11/11/2011	11/11/2011	09/07/2021		0m	North West
SP2	Infrastructure	Railway	Dubbo Local Environmental Plan 2011	11/11/2011	11/11/2011	09/07/2021		0m	South East
IN2	Light Industrial		Dubbo Local Environmental Plan 2011	11/11/2011	11/11/2011	09/07/2021		0m	East
R2	Low Density Residential		Dubbo Local Environmental Plan 2011	26/10/2018	26/10/2018	09/07/2021	Amendment No 13	55m	South
RE1	Public Recreation		Dubbo Local Environmental Plan 2011	11/11/2011	11/11/2011	09/07/2021		98m	East
SP2	Infrastructure	Classified Road	Dubbo Local Environmental Plan 2011	11/11/2011	11/11/2011	09/07/2021		201m	North East
RE1	Public Recreation		Dubbo Local Environmental Plan 2011	11/11/2011	11/11/2011	09/07/2021		216m	South East
R5	Large Lot Residential		Dubbo Local Environmental Plan 2011	11/11/2011	11/11/2011	09/07/2021		242m	North East
IN2	Light Industrial		Dubbo Local Environmental Plan 2011	11/11/2011	11/11/2011	09/07/2021		250m	North
IN2	Light Industrial		Dubbo Local Environmental Plan 2011	11/11/2011	11/11/2011	09/07/2021		264m	North West
R1	General Residential		Dubbo Local Environmental Plan 2011	11/11/2011	11/11/2011	09/07/2021		317m	South
R2	Low Density Residential		Dubbo Local Environmental Plan 2011	11/11/2011	11/11/2011	09/07/2021		333m	North East
RE1	Public Recreation		Dubbo Local Environmental Plan 2011	11/11/2011	11/11/2011	09/07/2021		353m	South East
RE1	Public Recreation		Dubbo Local Environmental Plan 2011	11/11/2011	11/11/2011	09/07/2021		359m	North East
IN2	Light Industrial		Dubbo Local Environmental Plan 2011	11/11/2011	11/11/2011	09/07/2021		363m	East
R1	General Residential		Dubbo Local Environmental Plan 2011	26/10/2018	26/10/2018	09/07/2021	Amendment No 13	467m	South
RE1	Public Recreation		Dubbo Local Environmental Plan 2011	11/11/2011	11/11/2011	09/07/2021		488m	North
RE1	Public Recreation		Dubbo Local Environmental Plan 2011	11/11/2011	11/11/2011	09/07/2021		516m	South East
RE1	Public Recreation		Dubbo Local Environmental Plan 2011	11/11/2011	11/11/2011	09/07/2021		545m	East
R1	General Residential		Dubbo Local Environmental Plan 2011	26/10/2018	26/10/2018	09/07/2021	Amendment No 13	545m	South
RE1	Public Recreation		Dubbo Local Environmental Plan 2011	11/11/2011	11/11/2011	09/07/2021		551m	South East
SP2	Infrastructure	Correctional Centre	Dubbo Local Environmental Plan 2011	11/11/2011	11/11/2011	09/07/2021		605m	North
RE1	Public Recreation		Dubbo Local Environmental Plan 2011	11/11/2011	11/11/2011	09/07/2021		622m	South East
R1	General Residential		Dubbo Local Environmental Plan 2011	11/11/2011	11/11/2011	09/07/2021		627m	South East
R5	Large Lot Residential		Dubbo Local Environmental Plan 2011	11/11/2011	11/11/2011	09/07/2021		650m	West
IN2	Light Industrial		Dubbo Local Environmental Plan 2011	11/11/2011	11/11/2011	09/07/2021		693m	North
R1	General Residential		Dubbo Local Environmental Plan 2011	11/11/2011	11/11/2011	09/07/2021		722m	South West

Zone	Description	Purpose	EPI Name	Published Date	Commenced Date	Currency Date	Amendment	Distance	Direction
R1	General Residential		Dubbo Local Environmental Plan 2011	11/11/2011	11/11/2011	09/07/2021		820m	South East
SP2	Infrastructure	Classified Road	Dubbo Local Environmental Plan 2011	11/11/2011	11/11/2011	09/07/2021		821m	East
R1	General Residential		Dubbo Local Environmental Plan 2011	11/11/2011	11/11/2011	09/07/2021		826m	South
B6	Enterprise Corridor		Dubbo Local Environmental Plan 2011	11/11/2011	11/11/2011	09/07/2021		875m	East
B6	Enterprise Corridor		Dubbo Local Environmental Plan 2011	11/11/2011	11/11/2011	09/07/2021		896m	East
B1	Neighbourhood Centre		Dubbo Local Environmental Plan 2011	11/11/2011	11/11/2011	09/07/2021		906m	South
RE1	Public Recreation		Dubbo Local Environmental Plan 2011	11/11/2011	11/11/2011	09/07/2021		918m	South
RE1	Public Recreation		Dubbo Local Environmental Plan 2011	11/11/2011	11/11/2011	09/07/2021		930m	South
R1	General Residential		Dubbo Local Environmental Plan 2011	11/11/2011	11/11/2011	09/07/2021		934m	South West
R1	General Residential		Dubbo Local Environmental Plan 2011	11/11/2011	11/11/2011	09/07/2021		985m	South
R1	General Residential		Dubbo Local Environmental Plan 2011	11/11/2011	11/11/2011	09/07/2021		997m	East

Environmental Planning Instrument Data Source: NSW Crown Copyright - Planning & Environment Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

Heritage

Jannali Road, Dubbo, NSW 2830

Commonwealth Heritage List

What are the Commonwealth Heritage List Items located within the dataset buffer?

Place Id	Name	Address	Place File No	Class	Status	Register Date	Distance	Direction
N/A	No records in buffer							

Heritage Data Source: Australian Government Department of the Environment and Energy - Heritage Branch Creative Commons 3.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/3.0/au/deed.en

National Heritage List

What are the National Heritage List Items located within the dataset buffer? Note. Please click on Place Id to activate a hyperlink to online website.

Place Id	Name	Address	Place File No	Class	Status	Register Date	Distance	Direction
N/A	No records in buffer							

Heritage Data Source: Australian Government Department of the Environment and Energy - Heritage Branch Creative Commons 3.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/3.0/au/deed.en

State Heritage Register - Curtilages

What are the State Heritage Register Items located within the dataset buffer?

Map Id	Name	Address	LGA	Listing Date	Listing No	Plan No	Distance	Direction
N/A	No records in buffer							

Heritage Data Source: NSW Crown Copyright - Office of Environment & Heritage Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

Environmental Planning Instrument - Heritage

What are the EPI Heritage Items located within the dataset buffer?

Map Id	Name	Classification Significance EPI Name		EPI Name	Published Date	Commenced Date	Currency Date	Distance	Direction	
N/A	No records in buffer									

Heritage Data Source: NSW Crown Copyright - Planning & Environment

Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

Natural Hazards

Jannali Road, Dubbo, NSW 2830

Bush Fire Prone Land

What are the nearest Bush Fire Prone Land Categories that exist within the dataset buffer?

Bush Fire Prone Land Category	Distance	Direction
No records in buffer		

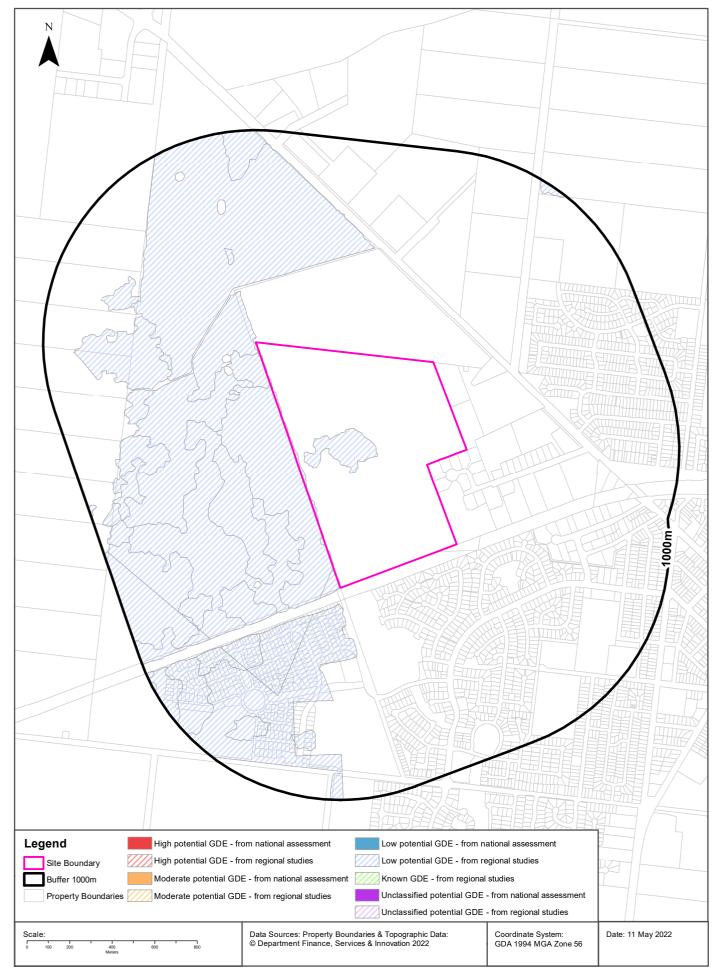
NSW Bush Fire Prone Land - © NSW Rural Fire Service under Creative Commons 4.0 International Licence

Ecological Constraints

Jannali Road, Dubbo, NSW 2830

Ramsar Wetlands

What Ramsar Wetland areas exist within the dataset buffer?


Map Id	Ramsar Name	Wetland Name	Designation Date	Source	Distance	Direction	
N/A	No records in buffer						

Ramsar Wetlands Data Source: © Commonwealth of Australia - Department of Agriculture, Water and the Environment

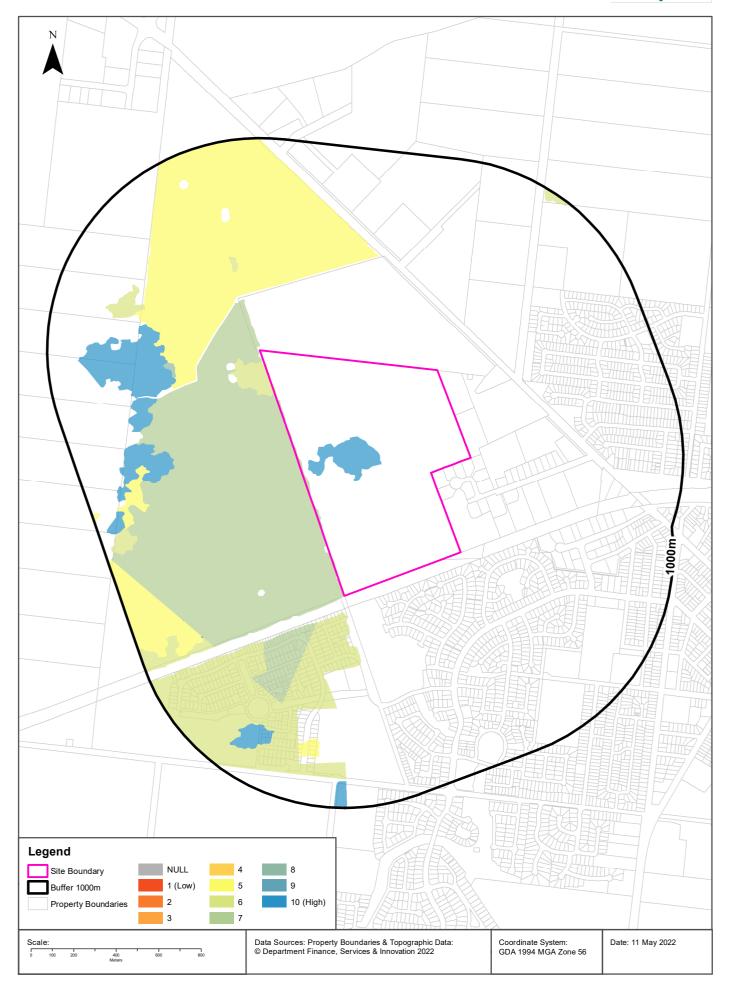
Ecological Constraints - Groundwater Dependent Ecosystems Atlas

Jannali Road, Dubbo, NSW 2830

Ecological Constraints

Jannali Road, Dubbo, NSW 2830

Groundwater Dependent Ecosystems Atlas


Туре	GDE Potential	Geomorphology	Ecosystem Type	Aquifer Geology	Distance	Direction
Terrestrial	Low potential GDE - from regional studies	Tablelands stepping down to west and breaking into detached hills.	Vegetation		0m	On-site

Groundwater Dependent Ecosystems Atlas Data Source: The Bureau of Meteorology

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Ecological Constraints - Inflow Dependent Ecosystems Likelihood

Jannali Road, Dubbo, NSW 2830

Ecological Constraints

Jannali Road, Dubbo, NSW 2830

Inflow Dependent Ecosystems Likelihood

Туре	IDE Likelihood	Geomorphology	Ecosystem Type	Aquifer Geology	Distance	Direction
Terrestrial	10	Tablelands stepping down to west and breaking into detached hills.	Vegetation		0m	On-site
Terrestrial	7	Tablelands stepping down to west and breaking into detached hills.	Vegetation		0m	On-site
Terrestrial	6	Tablelands stepping down to west and breaking into detached hills.	Vegetation		0m	On-site
Terrestrial	5	Tablelands stepping down to west and breaking into detached hills.	Vegetation		225m	North West
Terrestrial	8	Tablelands stepping down to west and breaking into detached hills.	Vegetation		406m	North West

Inflow Dependent Ecosystems Likelihood Data Source: The Bureau of Meteorology

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Ecological Constraints

Jannali Road, Dubbo, NSW 2830

NSW BioNet Atlas

Species on the NSW BioNet Atlas that have a NSW or federal conservation status, a NSW sensitivity status, or are listed under a migratory species agreement, and are within 10km of the site?

Kingdom	Class	Scientific	Common	Common NSW Conservation NSW Sensitivity Class		Federal Conservation Status	Migratory Species Agreements
Animalia	Aves	Anseranas semipalmata	Magpie Goose	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Anthochaera phrygia	Regent Honeyeater	Critically Endangered	Not Sensitive	Critically Endangered	
Animalia	Aves	Apus pacificus	Fork-tailed Swift	Not Listed	Not Sensitive	Not Listed	Rokamba;camba; Jamba
Animalia	Aves	Artamus cyanopterus cyanopterus	Dusky Woodswallow	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Calidris acuminata	Sharp-tailed Sandpiper	Not Listed	Not Sensitive	Not Listed	Rokamba;camba; Jamba
Animalia	Aves	Calidris ferruginea	Curlew Sandpiper	Endangered	Not Sensitive	Critically Endangered	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Calyptorhynchus lathami	Glossy Black- Cockatoo	Vulnerable	Category 2	Not Listed	
Animalia	Aves	Chthonicola sagittata	Speckled Warbler	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Circus assimilis	Spotted Harrier	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Climacteris picumnus victoriae	Brown Treecreeper (eastern subspecies)	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Daphoenositta chrysoptera	Varied Sittella	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Epthianura albifrons	White-fronted Chat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Falco subniger	Black Falcon	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Gallinago hardwickii	Latham's Snipe	Not Listed	Not Sensitive	Not Listed	ROKAMBA;JAMBA
Animalia	Aves	Glossopsitta pusilla	Little Lorikeet	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Grantiella picta	Painted Honeyeater	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Aves	Haliaeetus leucogaster	White-bellied Sea-Eagle	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Hieraaetus morphnoides	Little Eagle	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Hirundapus caudacutus	White-throated Needletail	Not Listed	Not Sensitive	Vulnerable	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Lathamus discolor	Swift Parrot	Endangered	Category 3	Critically Endangered	
Animalia	Aves	Lophochroa leadbeateri	Major Mitchell's Cockatoo	Vulnerable	Category 2	Not Listed	
Animalia	Aves	Lophoictinia isura	Square-tailed Kite	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Melanodryas cucullata cucullata	Hooded Robin (south-eastern form)	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Melithreptus gularis gularis	Black-chinned Honeyeater (eastern subspecies)	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Menura alberti	Albert's Lyrebird	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Neophema pulchella	Turquoise Parrot	Vulnerable	Category 3	Not Listed	

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Animalia	Aves	Ninox connivens	Barking Owl	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Ninox strenua	Powerful Owl	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Oxyura australis	Blue-billed Duck	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Petroica phoenicea	Flame Robin	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Pezoporus wallicus wallicus	Eastern Ground Parrot	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Phaethon rubricauda	Red-tailed Tropicbird	Vulnerable	Not Sensitive	Not Listed	CAMBA;JAMBA
Animalia	Aves	Philomachus pugnax	Ruff	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Polytelis swainsonii	Superb Parrot	Vulnerable	Category 3	Vulnerable	
Animalia	Aves	Pomatostomus temporalis temporalis	Grey-crowned Babbler (eastern subspecies)	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Rostratula australis	Australian Painted Snipe	Endangered	Not Sensitive	Endangered	
Animalia	Aves	Stagonopleura guttata	Diamond Firetail	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Tringa stagnatilis	Marsh Sandpiper	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Mammalia	Chalinolobus picatus	Little Pied Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Falsistrellus	Eastern False Pipistrelle	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Macrotis lagotis	Bilby	Extinct	Not Sensitive	Vulnerable	
Animalia	Mammalia	Miniopterus orianae oceanensis	Large Bent- winged Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Nyctophilus corbeni	Corben's Long- eared Bat	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Mammalia	Petaurus norfolcensis	Squirrel Glider	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Phascolarctos	Koala	Vulnerable	Not Sensitive	Endangered	
Animalia	Mammalia	Pteropus poliocephalus	Grey-headed Flying-fox	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Mammalia	Saccolaimus	Yellow-bellied Sheathtail-bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Vespadelus troughtoni	Eastern Cave Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Reptilia	Chelonia mydas	Green Turtle	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Reptilia	Ramphotyphlops endoterus	Interior Blind Snake	Endangered	Not Sensitive	Not Listed	
Animalia	Reptilia	Tiliqua occipitalis	Western Blue- tongued Lizard	Vulnerable	Not Sensitive	Not Listed	
Plantae	Flora	Calotis glandulosa	Mauve Burr-daisy	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Commersonia		Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Diuris tricolor	Pine Donkey Orchid	Vulnerable	Category 2	Not Listed	
Plantae	Flora	Homoranthus darwinioides	Fairy Bells	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Indigofera efoliata	Leafless Indigo	Endangered	Category 3	Endangered	

Data does not include NSW category 1 sensitive species.

NSW BioNet: $\ensuremath{\mathbb{C}}$ State of NSW and Office of Environment and Heritage

Location Confidences

Where Lotsearch has had to georeference features from supplied addresses, a location confidence has been assigned to the data record. This indicates a confidence to the positional accuracy of the feature. Where applicable, a code is given under the field heading "LC" or "LocConf". These codes lookup to the following location confidences:

LC Code	Location Confidence
Premise Match	Georeferenced to the site location / premise or part of site
Area Match	Georeferenced to an approximate or general area
Road Match	Georeferenced to a road or rail corridor
Road Intersection	Georeferenced to a road intersection
Buffered Point	A point feature buffered to x metres
Adjacent Match	Land adjacent to a georeferenced feature
Network of Features	Georeferenced to a network of features
Suburb Match	Georeferenced to a suburb boundary
As Supplied	Spatial data supplied by provider

USE OF REPORT - APPLICABLE TERMS

The following terms apply to any person (End User) who is given the Report by the person who purchased the Report from Lotsearch Pty Ltd (ABN: 89 600 168 018) (Lotsearch) or who otherwise has access to the Report (Terms). The contract terms that apply between Lotsearch and the purchaser of the Report are specified in the order form pursuant to which the Report was ordered and the terms set out below are of no effect as between Lotsearch and the purchaser of the Report.

- 1. End User acknowledges and agrees that:
 - (a) the Report is compiled from or using content (Third Party Content) which is comprised of:
 - content provided to Lotsearch by third party content suppliers with whom Lotsearch has contractual arrangements or content which is freely available or methodologies licensed to Lotsearch by third parties with whom Lotsearch has contractual arrangements (Third Party Content Suppliers); and
 - (ii) content which is derived from content described in paragraph (i);
 - (b) Neither Lotsearch nor Third Party Content Suppliers takes any responsibility for or give any warranty in relation to the accuracy or completeness of any Third Party Content included in the Report including any contaminated land assessment or other assessment included as part of a Report;
 - (c) the Third Party Content Suppliers do not constitute an exhaustive set of all repositories or sources of information available in relation to the property which is the subject of the Report (**Property**) and accordingly neither Lotsearch nor Third Party Content Suppliers gives any warranty in relation to the accuracy or completeness of the Third Party Content incorporated into the report including any contaminated land assessment or other assessment included as part of a Report;
 - (d) Reports are generated at a point in time (as specified by the date/time stamp appearing on the Report) and accordingly the Report is based on the information available at that point in time and Lotsearch is not obliged to undertake any additional reporting to take into consideration any information that may become available between the point in time specified by the date/time stamp and the date on which the Report was provided by Lotsearch to the purchaser of the Report;
 - (e) Reports must be used or reproduced in their entirety and End User must not reproduce or make available to other persons only parts of the Report;
 - (f) Lotsearch has not undertaken any physical inspection of the property;
 - (g) neither Lotsearch nor Third Party Content Suppliers warrants that all land uses or features whether past or current are identified in the Report;
 - (h) the Report does not include any information relating to the actual state or condition of the Property;
 - (i) the Report should not be used or taken to indicate or exclude actual fitness or unfitness of Land or Property for any particular purpose
 - (j) the Report should not be relied upon for determining saleability or value or making any other decisions in relation to the Property and in particular should not be taken to be a rating or assessment of the desirability or market value of the property or its features; and
 - (k) the End User should undertake its own inspections of the Land or Property to satisfy itself that there are no defects or failures
- 2. The End User may not make the Report or any copies or extracts of the report or any part of it available to any other person. If End User wishes to provide the Report to any other person or make extracts or copies of the Report, it must contact the purchaser of the Report before doing so to ensure the proposed use is consistent with the contract terms between Lotsearch and the purchaser.
- 3. Neither Lotsearch (nor any of its officers, employees or agents) nor any of its Third Party Content Suppliers will have any liability to End User or any person to whom End User provides the Report and End User must not represent that Lotsearch or any of its Third Party Content Suppliers accepts liability to any such person or make any other representation to any such person on behalf of Lotsearch or any Third Party Content Supplier.
- 4. The End User hereby to the maximum extent permitted by law:
 - (a) acknowledges that the Lotsearch (nor any of its officers, employees or agents), nor any of its Third Party Content Supplier have any liability to it under or in connection with the

Report or these Terms;

- (b) waives any right it may have to claim against Third Party Content Supplier in connection with the Report, or the negotiation of, entry into, performance of, or termination of these Terms; and
- (c) releases each Third Party Content Supplier from any claim it may have otherwise had in connection with the Report, or the negotiation of, entry into, performance of, or termination of these Terms.
- 5. The End User acknowledges that any Third Party Supplier shall be entitled to plead the benefits conferred on it under clause 4, despite not being a party to these terms.
- 6. End User must not remove any copyright notices, trade marks, digital rights management information, other embedded information, disclaimers or limitations from the Report or authorise any person to do so.
- 7. End User acknowledges and agrees that Lotsearch and Third Party Content Suppliers retain ownership of all copyright, patent, design right (registered or unregistered), trade marks (registered or unregistered), database right or other data right, moral right or know how or any other intellectual property right in any Report or any other item, information or data included in or provided as part of a Report.
- 8. To the extent permitted by law and subject to paragraph 9, all implied terms, representations and warranties whether statutory or otherwise relating to the subject matter of these Terms other than as expressly set out in these Terms are excluded.
- 9. Subject to paragraph 6, Lotsearch excludes liability to End User for loss or damage of any kind, however caused, due to Lotsearch's negligence, breach of contract, breach of any law, in equity, under indemnities or otherwise, arising out of all acts, omissions and events whenever occurring.
- 10. Lotsearch acknowledges that if, under applicable State, Territory or Commonwealth law, End User is a consumer certain rights may be conferred on End User which cannot be excluded, restricted or modified. If so, and if that law applies to Lotsearch, then, Lotsearch's liability is limited to the greater of an amount equal to the cost of resupplying the Report and the maximum extent permitted under applicable laws.
- 11. Subject to paragraph 9, neither Lotsearch nor the End User is liable to the other for:
 - (a) any indirect, incidental, consequential, special or exemplary damages arising out of or in relation to the Report or these Terms; or
 - (b) any loss of profit, loss of revenue, loss of interest, loss of data, loss of goodwill or loss of business opportunities, business interruption arising directly or indirectly out of or in relation to the Report or these Terms,

irrespective of how that liability arises including in contract or tort, liability under indemnity or for any other common law, equitable or statutory cause of action or otherwise.

12. These Terms are subject to New South Wales law.

Appendix D Borehole Logs

6
GEOTESTA

BOREHOLE LOG

		N	DUA
BORE	HOLE	NO:	BH1

GEOT	EST	A							Dama: 4 of 4		
Client:		_	Bathla Group	Drilling Co:	Geotesta Pty	Ltd		Easting:	Page: 1 of 1		
Projec Job No	o:	NE1		Driller: Ali Rig Type: Ute Mounted			Northing Grid Ref:		See Figure 1		
Locatio Date D			Narromine Road, Dubbo NSW 2830 1/2022	Inclination: Bearing:	Vertical Vertical			Collar RL Logged b		M	.H.B
est Met	thod:	AS 128	9.6.3.2-1997 & AS 1726-2017					-			
000 Depth (m) Drilling Method	Granhic Log	Group Symbol	MATERIAL DES Type, colour, particle size a		Ire	Moisture	Consistency / Strength	DCP blows/100mm	FIELD TESTS & NOTES	Sampling / Runs	00.00
_			TOPSOIL: Silty Clay with sand, red	-brown		w	-	6 4	Di-1-1: 0.1m	+	-
		CI	Silty CLAY: red-brown with mediun	n plasticity		м	F	2			-
<u>).50</u>							ST VST	1 1 4 9 6 6	Att-1-1: 1.2m S-1-1: 1.3m		<u>0.50</u> - - 1.00
1.50			Grades, orange-brown, with gravel	pieces				10 10 9 11 14 11 12			1.50
2.00	ŝ						н	9 9 12 14 18 17 14 15 14 15 14 17			<u>2.00</u> <u>2.50</u>
3.00 			Grades, mottled grey yellow-brown,	medium to hig	ih plasticity			Refusal	Number of blows>20		<u>3.00</u> <u>3.50</u>
4 <u>.00</u> 											<u>4.00</u>
			Borehole Terminated at 4.5m.								-
											-
5.00	+0		velative density	N-4-							5.00
consis VS S F ST VST H WC	ver sof firm stiff ver har	y soft t f y stiff d compac	ted EL: extremly low strength	water level	sampling / tes		om core		Standard Penetration Test		
	classi other		cordance with AS1726	l risen to er inflow	T intact tube	e samp	ole		B Bulk sample Supp Su from Pocket Penetrom Suv Su from Field Vane Shear		

GEOTE	BOREHOLE LOG									BOREHOLE No: BH2 Page: 1 of 1			
Client: Project: Job No: Location Date Dr	: n: rilled:	13L N 2830 NE116 13L N 20/01/	arromine Road, Dubbo NSW Dri 57 Rig arromine Road, Dubbo NSW Inc	ller: Type: lination:	Geotesta P Ali Ute Mounte Vertical Vertical			Easting: Northing Grid Re Collar R Logged	: g: f: tL:	See Figure 1 BD Checked by:	N	1.H.B	
00.0 Depth (m) Drilling Method	Graphic Log	Group Symbol	MATERIAL DESCRIF Type, colour, particle size and sha		9	Moisture	Consistency / Strength	DCP blows/100mm		FIELD TESTS & NOTES	Sampling / Runs	000 Depth (m)	
0.50 1.00 1.50 2.00 2.50 3.00		CI	TOPSOIL: Silty Clay with gravel, red bro Silty CLAY: medium plasticity, red-brov Becoming high plasticity			D-M D-M	ST VST	13 8 5 4 4 8 12 12 12 12 12 12 12 12 12 12 5 7 6 5 7 6 5 6 6 8 10 12 14 Refusal	Ν	Di-2-1: 0.15m Di-2-2: 0.2m Di-2-3: 0.1m S2-1: 1.3m ATT-2-1: 0.9m		<u>0.50</u> <u>-</u> <u>1.00</u> <u>1.50</u> <u>2.00</u> <u>2.50</u> <u>3.00</u>	
S F ST VST H WC soil clas	very so soft firm stiff very sti hard well con ssificati assified	ff mpacted on: in acco	Borehole Terminated at 3m. relative density: moisture: VL very loose D VL very loose D Dry L loose M Moist MD medium dense W Wet D dense S Saturated VD very dense water:	to	sampling / to	esting: ample fro			B Supp Suv	Standard Penetration Test Bulk sample Su from Pocket Penetrome Su from Field Vane Shear		<u>3.50</u> <u>4.00</u> <u>4.50</u> <u>5.00</u>	

GEOT	TE	STA		BOREH	OLE LO	G					BOREHO		вн	3
Client Projec Job N Locat	t: ct: lo:		13L N 2830 NE110	athla Group arromine Road, Dubbo NSW 67 arromine Road, Dubbo NSW	Drilling Co: Driller: Rig Type: Inclination:	Geotesta Pty Ali Ute Mounted Vertical	Ltd		Easting Northing Grid Re Collar F	g: f:	: 1 o See Figure 1			
Date			20/01/	2022 6.3.2-1997 & AS 1726-2017	Bearing:	Vertical			Logged	by:	BD Che	ecked by:	N	I.H.B
	Drilling Method	Graphic Log	Group Symbol	MATERIAL DES		re	Moisture	Consistency / Strength	DCP blows/100mm		FIELD TES & NOTES		Sampling / Runs	00 Depth (m)
				TOPSOIL: Silty Clay with gravel, b			D.M		10 8 6		Di-3-1: 0.1 Di-3-2: 0.2 Di-3-3: 0.3	2m		0.00
0.50	rger		CI	Silty CLAY: medium plasticity, red	-brown		М	ST VST	4 5 6 7 6		Di-3: 0.5r	n		<u>0.50</u>
	Solid Flight Auger			with gravel, mottled gray brown				н	6 7 8 9 8 11					<u>1.00</u>
1 <u>.50</u>				CHALE: Extramely Weathered Ve	n I ow Strongt	h rad brown n	M		14 18 18 Refusal	Nu	S3-1: 1.8i Imber of blov			1.50
2.00				SHALE: Extremely Weathered, Ver	ry Low Strengt	n, rea brown, m	IVI	н						2.00
2 <u>.50</u>				Borhole refusal at 2m										2.50
3.00														 3.00
3.50														<u>3.50</u>
4 <u>.00</u>														<u>4.00</u>
4.50														<u>4.50</u>
5.00 consis	ste	ncy:		relative density: moisture:	Notes	5:								5.00
VS S F ST	: 1 :	very so soft firm stiff		VL very loose D Dry L loose M Moist MD medium dense W Wet D dense S Satural	ted		41							
soil is	ا ا as cla s ot	sificati ssified herwise	mpacte on:	d EL: extremly low strength ▼ leve rdance with AS1726	water level I risen to er inflow	sampling / tes intact sam T intact tube	ple fro			B Supp	Standard Pene Bulk sample Su from Pocke Su from Field	et Penetrome	eter	

		2		BOREHOLE No: BH4							
GEO		STA	The Ba	athla Group Drilling Co: Ge	eotesta Pty	Ltd		Easting	Page: 1 of 1		
Proje Job			13L Na 2830 NE116	arromine Road, Dubbo NSW Driller: Al				Northing Grid Re	g:		
Loca	atio	n:		arromine Road, Dubbo NSW Inclination: Ve	ertical ertical			Collar R Logged	:L:	N	
Test M				6.3.2-1997 & AS 1726-2017					, , , , , , , , , , , , , , , , , , ,		ω
00.0 Depth (m)	Drilling Method	Graphic Log	Group Symbol	MATERIAL DESCRIPTION Type, colour, particle size and shape, structure		Moisture	Consistency / Strength	DCP blows/100mm	FIELD TESTS & NOTES	Sampling / Runs	O Water Levels Depth (m)
				TOPSOIL: Silty Clay, red-brown			WC	9 8	Di-4-1: 0.1m Di-4-2: 0.2m		
_			CI	Silty CLAY: medium plasticity, red-brown		М	ST	4 4	Di-4-3: 0.3m Di-4: 0.5		_
0 <u>.50</u> – – 1 <u>.00</u>				becoming mottled grey-brown			VST	5 5 7 5 6 7 8	Att-4-1: 0.7m S-4-1: 0.8m		0.50
1 <u>.50</u> –							Н	8 9 11 14 16 17 18			 1.50
2.00				Sandy CLAY with silt, medium plasticity, yellow-orar	nge white	D-M	М	16 17			2.00
2.50	Flight Auger			becoming yellow orange				18 17 19 Refusal	Number of blows > 20		2.50
3.00	Solid										 3.00
_				Borhole terminated at 3m							
3 <u>.50</u>											 <u>3.50</u>
4.00											 4.00
4.50											
5.00											5.00
cons VS S F ST VST H WC		very so soft firm stiff very sti hard well co	ff	EL: extremly low strength	impling / test intact sam		m core		Standard Penetration Test		
soil is	s cla	sificati assified therwise	in acco	rdance with AS1726 ▼ level risen to • water inflow T	intact tube	samp	le		B Bulk sample Supp Su from Pocket Penetromet Suv Su from Field Vane Shear to		

		2		BOREH	OLE LO	G						HOLE No:	вн	5
GEC		SIA	TI -		- D.111 0	0- 1 1	74 . 1 . 1			Pag	e: 1	of 1		
Clier Proj Job Loca Date	ect: No: atior	ו:	13L Na NE116	arromine Road, Dubbo NSW 2830	Drilling Co: Driller: Rig Type: Inclination: Bearing:	Ali Ute Mount Vertical Vertical			Eastin Northin Grid R Collar Logge	ng: lef: RL:	 See Figu BD	ure 1 Checked by:	N	1.H.B
Test N	leth	od: AS	1289.6	5.3.2-1997 & AS 1726-2017	-				-					
0.0 Depth (m)	Drilling Method	Graphic Log	Group Symbol	MATERIAL DE Type, colour, particle size		ire	Moisture	Consistency / Strength	DCP blows/100mm			TESTS DTES	Sampling / Runs	0 0 Depth (m)
_				TOPSOIL: Silty CLAY, red- brown	1		М	PC	5		Di-5-1	: 0.1m		
	Solid Flight Auger		CI	Silty CLAY : medium plasticity, rec Grades: becoming orange brown Grades: with gravel dominated, re			M	VST	5 6 8 5 5 7 6 6 7 7 8 8 6 6 6 6 5 6 12 R	Numbe	Di-5-1 Di-5-2: S-5-1 Di-5	0.15m :0.9m : 1m		
3.00 				Borehole terminated at 3m										3.00
Cons VS S F ST VST		ency: very so soft firm stiff very sti		relative density: moisture: VL very loose D Dry L loose M Mois MD medium dense W Wet D dense S Satu VD very dense water:		s: sampling /	testing:							
H WC soil soil i	clas s cla	hard well co sificati assified	mpacteo ion:	EL: extremly low strength rdance with AS1726	water level vel risen to ater inflow	intact :	sample fro			B Supp Suv	Bulk sam Su from F	Penetration Tes ple Pocket Penetrom Field Vane Shear	eter	

GEOT	3)	BOREHO	OLE LO)G					BOREHOLE No:	BH	16
					0 1 1 5				Pag	je: 1 of 1		
Client Projec Job N Locati Date I	o:	13L N NE11 13L N	larromine Road, Dubbo NSW 2830	Drilling Co: Driller: Rig Type: Inclination: Bearing:	Geotesta Pri Ali Ute Mounte Vertical Vertical			Eastin Northin Grid R Collar Logge	ng: Ref: RL:	 See Figure 1 BD Checked by:	N	1.H.B
Test Me	thod: A	S 1289.	6.3.2-1997 & AS 1726-2017			_		·			_	
00.0 Depth (m)	Graphic Log	Group Symbol	MATERIAL DES Type, colour, particle size a		re	Moisture	Consistency / Strength	DCP blows/100mm		FIELD TESTS & NOTES	Sampling / Runs	0.0 Mater Levels Depth (m)
			TOPSOIL: Silty CLAY, red-brown			М	wc	9				_
0.50		CI	Silty CLAY: medium plasticity, red-	brown		M	VST	7 5 4 5 6 5 6 5 6 8 7 8		Di - 6-1: 0.1m Di - 6-2: 0.1m Di - 6-3: 0.15m Di - 6: 1m		0.50
			Grades: becoming yellow- orange				н	9 12 13 15 16 17 17 18 18 19 18 R	Numb	er of blows >20		<u>1.50</u> <u>2.00</u> <u>2.50</u> <u>3.00</u>
4 <u>.00</u> 4 <u>.50</u>			Borehole terminated at 3m									<u>3.50</u> <u>4.00</u> <u>4.50</u>
5.00				1								5.00
VS S F ST VST H WC soil cl soil is	assific classifie	soft stiff compacte ation: ed in acco	ed EL: extremly low strength ↓ level prdance with AS1726	vater level	sampling / t	testing: ample fro			B Supp	Standard Penetration Tes Bulk sample Su from Pocket Penetrom	eter	
unless	otherw	ise noted	Le wate	er inflow		· · ŀ			Suv	Su from Field Vane Shear	test	

6
GEOTESTA

BOREHOLE LOG

BOR	EHO	LE N	o :	BH7

GEOT	ESTA							Pa	ige: 1	of 1		
Client:		The Ba	athla Group	Drilling Co:	Geotesta I	Pty Ltd		Easting:				
Projec	t:		arromine Road, Dubbo NSW 2830	Driller:	Ali			Northing:				
Job No Locatio		NE116	67 arromine Road, Dubbo NSW 2830	Rig Type: Inclination:	Ute Mount Vertical	ied		Grid Ref: Collar RL:	See Fig	ure 1		
Date D	rilled:	20/01/	2022	Bearing:	Vertical			Logged by:	BD	Checked by:	Ν	1.H.B
Test Met	hod: AS	5 1289.6 T	6.3.2-1997 & AS 1726-2017				1					(0
Depth (m)	Log	mbol				e	_ ∑t	u u			Sampling / Runs	Water Levels Depth (m)
Depth (m) Drilling Method	Graphic Log	Group Symbol	MATERIAL DES Type, colour, particle size a		re	Moisture	Consistency / Strength	DCP blows/100mm		TESTS DTES	pling /	Nater Dept
0.00	ő	Gro		•		2	l S ″	lold			Sam	0.00
			TOPSOIL: Silty CLAY, red - brown			D-M	wc	10				0.00
			Silty CLAY : medium plasticity, red- l	brown		D-M		12 16		1 : 0.1m 2 : 0.2m	-	_
			5 1 5,					7		3 : 0.15m		
0.50								6 5				0.50
								3				
								6 9				_
1.00							ST	5				1.00
			Grades: becoming yellow- brown					4				
								5				_
1.50								4		: 1.4m		1.50
			Grades: becoming mottled grey yell	ow - brown			VST	5	Att -7-	1: 1.4m		
								8				
2.00								R	Number o	f blows > 20		2.00
			Cradae: becoming more grov									
			Grades: becoming more grey									
Solid Flight Auger												2.50
			Borehole refusal at 2.5m									_
Solid												_
3.00												3.00
0.00												0.00
												_
3.50												3.50
												_
4.00												4.00
												_
												_
4.50												4.50
												_
												_
5.00												 5.00
consis	-	oft	relative density: moisture:	Notes	s:							
VS S	very s soft	on	VL very loose D Dry L loose M Moist									
F ST	firm stiff		MD medium dense W Wet D dense S Saturat	her								
VST	very st	iff	VD very dense water:	·	sampling /			Г	7			
H WC		mpacte	d EL: extremly low strength	vater level	intact	sample fro	om core			Penetration Test		
	assificat lassified		rdance with AS1726	risen to	 	4 b		B Supp	Bulk sam Su from	iple Pocket Penetrom	eter	
	otherwis			r inflow	T intact	tube samp	DIE	Suv		Field Vane Shear		

6
GEOTESTA

Image: Decision of the second state	BOREHOLE No: BH8			OLE LOG	BOREHO	2	C
Project: Job No: Location: Date Drilled: 13L Narromine Road, Dubbo NSW 2830 NE1167 Driller: Tal. Narromine Road, Dubbo NSW 2830 20/01/2022 Driller: Rig Type: Inclination: Bearing: Ali Ute Mounted Vertical Northing: Collar RL: Vertical	Page: 1 of 1						
Project. Notifield. All Monthley. See Figure 1 Job No: NE1167 13L Narromine Road, Dubbo NSW 2830 Dir Monthley. Ute Mounted Grid Ref. See Figure 1 Date Drilled: 20/01/2022 Doi No: NATERIAL DESCRIPTION Bot Note See Figure 1 See Figure 1 Test Method: AS 1289.6.3.2-1997 & AS 1726-2017 MATERIAL DESCRIPTION Image: See Figure 1 See Figure 1 (ii) trade of the bot of the b	Easting:	Eastin	Ltd	Drilling Co: Geotesta Pty	· · · · ·		Client:
Location: 13L Narromine Road, Dubbo NSW 2830 Inclination: Vertical Collar RL: Date Drilled: 20/01/2022 Bearing: Vertical Logged by: BD Checked by: M.H.B Test Method: AS 1289.6.3.2-1997 & AS 1726-2017 MATERIAL DESCRIPTION							
Test Method: AS 1289.6.3.2-1997 & AS 1726-2017 (i)							
Image: bit with the second state in the second state is	Logged by: BD Checked by: M.H.B	Logge		Bearing: Vertical			
0.00 E C S S S S S S 0.00 0.00 TOPSOIL: Silty CLAY, red - brown, with gravel dominated D-M WC 15 Bi -8-1: 0.1m 0.00 0.50 S Cl Natural silty CLAY: medium plasticity, red - brown D-M VST 14 Di -8-2: 0.15m 0.00 0.50 Cl Natural silty CLAY: medium plasticity, red - brown D-M VST 14 Di -8-3: 0.1m 0.50 1.00 Clayey SILT: medium plasticity, brown, with sand soil, yellow - M VST 5 0.50 1.00 Clayey SILT: medium plasticity, brown, with sand soil, yellow - M VST 5 0.50 1.00 Clayey SILT: medium plasticity, brown, with sand soil, yellow - M VST 5 0.50 1.00 Clayey SILT: medium plasticity, brown, with sand soil, yellow - M VST 5 0.50 1.00 Clayey SILT: medium plasticity, brown, with sand soil, yellow - M VST 5 0.50							
0.00 E C S S S S S S 0.00 0.00 TOPSOIL: Silty CLAY, red - brown, with gravel dominated D-M WC 15 Bi -8-1: 0.1m 0.00 0.50 S Cl Natural silty CLAY: medium plasticity, red - brown D-M VST 14 Di -8-2: 0.15m 0.00 0.50 Cl Natural silty CLAY: medium plasticity, red - brown D-M VST 14 Di -8-3: 0.1m 0.50 1.00 Clayey SILT: medium plasticity, brown, with sand soil, yellow - M VST 5 0.50 1.00 Clayey SILT: medium plasticity, brown, with sand soil, yellow - M VST 5 0.50 1.00 Clayey SILT: medium plasticity, brown, with sand soil, yellow - M VST 5 0.50 1.00 Clayey SILT: medium plasticity, brown, with sand soil, yellow - M VST 5 0.50 1.00 Clayey SILT: medium plasticity, brown, with sand soil, yellow - M VST 5 0.50	Sistency / C P C P Sistency / Sistency	Omm	e			Log	th (m) ethod
0.00 E C S S S S S S 0.00 0.00 TOPSOIL: Silty CLAY, red - brown, with gravel dominated D-M WC 15 Bi -8-1: 0.1m 0.00 0.50 S Cl Natural silty CLAY: medium plasticity, red - brown D-M VST 14 Di -8-2: 0.15m 0.00 0.50 Cl Natural silty CLAY: medium plasticity, red - brown D-M VST 14 Di -8-3: 0.1m 0.50 1.00 Clayey SILT: medium plasticity, brown, with sand soil, yellow - M VST 5 0.50 1.00 Clayey SILT: medium plasticity, brown, with sand soil, yellow - M VST 5 0.50 1.00 Clayey SILT: medium plasticity, brown, with sand soil, yellow - M VST 5 0.50 1.00 Clayey SILT: medium plasticity, brown, with sand soil, yellow - M VST 5 0.50 1.00 Clayey SILT: medium plasticity, brown, with sand soil, yellow - M VST 5 0.50	DCF Issister Streng State DCF Issister Sater CF Issister Sater CF Issister Maximum Sater CF Issister DCF Issister Streng Streng Sater CF Issister DCF Issister Sater CF Issister Sater CF Issister DCF Issister Sater CF Issister DCF Issister Sater CF Issister DCF Issister Sater CF Issister DCF Issister DCF Issister Sater CF Issister DCF Issister	streng DCF vs/10	Aoistu		Type, colour, particle size a	aphic (Dep ing M
TOPSOIL: Silty CLAY, red - brown, with gravel dominated D-M WC 15 Di -8-1: 0.1m Di -8-2: 0.15m 0.50 CI Natural silty CLAY: medium plasticity, red - brown D-M VST 14 Di -8-2: 0.15m 0.50 1.00 Clayey SILT: medium plasticity, brown, with sand soil, yellow - M VST 5 0.50 0.50 1.00 Clayey SILT: medium plasticity, brown, with sand soil, yellow - M VST 5 0.50 0.50	8 · · · · · · · · · · · · · · · · · · ·	po Co	2			ő	
s 5 Di -8-2 : 0.15m 0.50 CI Natural silty CLAY: medium plasticity, red - brown D-M VST 14 Di -8-3: 0.1m 0.50 0.50 9 Di -8-4 : 0.2m 8 4 10 10 10 1.00 Clayey SILT: medium plasticity, brown, with sand soil, yellow - M VST 5 11 10 10 1.00 Wije Att - 8 -1: 1m 11 7 Att - 8 -1: 1m 1.0		WC 15	D-M	with gravel dominated	TOPSOIL: Silty CLAY, red - brown,		0.00
0.50 CI Natural silty CLAY: medium plasticity, red - brown D-M VST 14 Di -8-3: 0.1m Di -8-4: 0.2m 0.50 0.50 0 0 0 0 0 0 0 0.50 0 0 0 0.50 0 0.50 0 0 0 0.50 0 0 0 0 0.50 0					c		
1.00 Clayey SILT: medium plasticity, brown, with sand soil, yellow - M VST 5 1.00 7 Att - 8 -1: 1m 1.00			D-M	ty, red - brown			-
1.00 Clayey SILT: medium plasticity, brown, with sand soil, yellow - M VST 5 1.01 vije 111 7 Att - 8 -1: 1m							0.50
1.00 10 1.00 Clayey SILT: medium plasticity, brown, with sand soil, yellow - M VST 5 1.00 7 Att - 8 -1: 1m 11 1.0							-
1.00 wije vije 11 7 Att - 8 -1: 1m 1.00	10	10					
7 Att - 8 -1: 1m 6			М	wn, with sand soil, yellow -			1 00
							_
Grades: becoming mottled grey yellow - brown 5				ow - brown	Grades: becoming mottled grey yello		
1.50 R>20 S-8-1: 1.4m <u>1.50</u>	R>20 S-8-1: 1.4m <u>1.50</u>	R>20					1.50
Grades: becoming red- brown					Grades: becoming red- brown		-
2.00 Borehole refusal at 1.8m 2.00	2.00				Borehole refusal at 1.8m		2 00
							<u>ه</u> –
	2.50					5	2.50 <u>t</u>
							9
							Sol
3.00 3.00	3.00						3.00
							-
3.50	3.50						3.50
							_
4.00 4.00	4.00						4.00

4.00												4.00 4.50 4.50
5.00						Nataa						5.00
consist	-		tive density:	moi	isture:	Notes:						
VS	very soft	VL	very loose	D	Dry							
S	soft	L	loose	М	Moist							
F	firm	MD	medium dense	W	Wet							
ST	stiff	D	dense	S	Saturated							
VST	very stiff	VD	very dense	wat	ter:	s	ampling / tes	ting:			1	
н	hard		-		water le		intact san		om core		Standard Penetration Test	
WC	well compacte	ed	EL: extremly low s	strength	·						l	
	soil classification:				level risen t	to	-			В	Bulk sample	
	lassified in acco otherwise noted		ce with AS1726		 water inflov 	v T	intact tube	e samp	ole	Supp Suv	Su from Pocket Penetrome Su from Field Vane Shear t	

Su from Field Vane Shear test

water inflow

GEOTESTA PTY LTD

unless otherwise noted

BOREHOLE LOG

BORE	HOLE	No:	BH9

GEOT	ESTA								Paç	je: 1	of 1		
Client:		The Ba	athla Group	Drilling Co:	Geotest	a Pty Ltd		Eastin			01 1		
Projec	t:	13L Na	arromine Road, Dubbo NSW 2830	Driller:			Northing:						
Job No	Job No: NE1167		Rig Type: Ute Mounted		Grid R	lef:	See Fig	ure 1					
Date D		20/01/2		Inclination: Bearing:	Vertical Vertical			_Collar Logge		BD	Checked by:	N	1.H.B
Test Met	hod: AS	1289.6	5.3.2-1997 & AS 1726-2017								•		
Depth (m) Drilling Method	Graphic Log	Group Symbol	MATERIAL DES Type, colour, particle size a		re	Moisture	Consistency / Strength	DCP blows/100mm			TESTS OTES	Sampling / Runs	Water Levels Depth (m)
0.00			TOPSOIL: Silty CLAY, red -brown			N		13				- 07	0.00
								4					
			Silty CLAY : medium plasticity, red- I	prown orange		N	ST	2				_	_
0.50			onty CLAT . mediam plasticity, red-1	orown orange				3					0.50
								3 3			: 0.5m : 0.5m		_
								4			1: 0.5m		_
1.00								4 3					1.00
1.00								4					1.00
							VST	4 5					_
								5					_
1.50								5 6					1.50
								6					
								5 7					_
2.00								8					2.00
			Grades: becoming yellow - orange					8 10					_
								10					
2.50 t							Н	12 12					2.50
								14					
Solid Flight Auger								14 17					_
3.00			Borehole termination at 3m				-					-	3.00
													-
3.50													3.50
													_
$ \neg$													
4.00													4.00
-													_
4.50													4.50
-													_
5.00 consis	tenev		relative density: moisture:	Notes									5.00
VS	very s	oft	VL very loose D Dry	Notes	•								
S	soft		L loose M Moist										
F ST	firm stiff		MD medium dense W Wet D dense S Saturat	ed									
VST	very st	ff	VD very dense water:			g / testing				Standar	Denetration T	+	
H WC		mpacted	EL: extremly low strength	vater level	inta	ct sample	TOTT COFE	-			Penetration Tes	L	
soil is c	Issificat lassified otherwis	in acco	rdance with AS1726	risen to r inflow	T inta	ct tube sar	nple		B Supp Suv		iple Pocket Penetrom Field Vane Sheai		
			-		Ţ						0		

9		BOREH	ULE LO	JG				BORE	HOLE No:	BH10
GEOTESTA	The D			Ou stanta Dta	1.4.1			age: 1	of 1	
Client: Project: Job No: Location: Date Drilled:	13L N NE11	larromine Road, Dubbo NSW 2830	Drilling Co: Driller: Rig Type: Inclination: Bearing:	Geotesta Pty Ali Ute Mounted Vertical Vertical	Ltd		Easting: Northing: Grid Ref: Collar RL: Logged by		gure 1 Checked by:	M.H
	_	6.3.2-1997 & AS 1726-2017	Bournig.			1		,	chookou by:	
Drilling Method Graphic Log	Group Symbol	MATERIAL DES Type, colour, particle size a		re	Moisture	Consistency / Strength	DCP blows/100mm		D TESTS IOTES	Sampling / Runs
_		TOPSOIL: Silty CLAY, red - brown			М	wc	10 7	Di -10	-1: 0.1m	
		Silty CLAY: medium plasticity, red-	brown		M	VST	5 4 5 7 7 8	Di -10- Att-10	2: 0.15m 0-1: 0.5m -1: 0.7m	
		Grades: becoming more moist oran	ge - brown - re	d			7 7 7 8 8	0-10-		-
							8 8 7 9 9 10			
Flight Auger		Borehole terminated at 2m				10(0.7)	10			
Solid										
<u></u>										
.00										
soil classifica	tiff ompacte tion:	ed EL: extremly low strength	ted	sampling / tes		om core	B	Bulk sar	d Penetration Tes nple Pocket Penetron	

M.H.B

Water Levels Sampling / Runs

0.00

0.50

1.00

_ 1.50

2.00

2.50

--3.00 • --3.50 _ _ 4.00

-_ 4.50 --_ 5.00

_

Ê Depth (

Depth (m)	Symbol	Material Description	Moisture	Consistency/Density	Field Notes
0.0-0.2	-	TOPSOIL: Silty CLAY, low-to-medium plasticity, brown	Moist	Moderately Compacted	Sample collected at 0.2-0.4m
0.2-0.9	CI	Silty CLAY: medium plasticity, brown, trace medium- grained sand	Moist	Firm to Stiff	Groundwater was not encountered

EBH1 - Log

EBH2 - Log

Depth (m)	Symbol	Material Description	Moisture	Consistency/Density	Field Notes
0.0-0.2	-	TOPSOIL: Silty CLAY, medium plasticity, dark brown, traced gravel	Moist	Moderately Compacted	Sample collected at 0.0-0.2m
0.1-0.5	CI	Silty CLAY: medium plasticity, grey-brown	Moist	Stiff	Groundwater was not encountered

EBH3 & EIL - Log

Depth (m)	Symbol	Material Description	Moisture	Consistency/Density	Field Notes
0.0-0.2	-	TOPSOIL: Silty CLAY, low-to-medium plasticity, brown, with sand	Moist	Poorly Compacted	EBH3 & EIL collected at 0.0-0.4m
0.2-0.4	CI	Silty CLAY: medium plasticity, yello brown	Moist	Firm	Groundwater was not encountered

PSI REPORT - 13L and Lot 7 DP223428 Narromine Rd, Dubbo NSW 2830

NE1295

Dept (m)	n Symbol	Material Description	Moisture	Consistency/Density	Field Notes
0.0-0.	2 -	TOPSOIL: Silty CLAY, medium-to-high plasticity, dark brown	Wet	Poorly Compacted	EBH4 collected at 0.0-0.2m
0.2-1.) CI	Silty CLAY: medium plasticity, brown, mottled black	Moist to Wet	Firm	Groundwater was not encountered

EBH4 - Log

EBH5 - Log

Depth (m)	Symbol	Material Description	Moisture	Consistency/Density	Field Notes
0.0-0.2	-	TOPSOIL: Silty CLAY, medium plasticity, dark brown	Moist to Wet	Poorly Compacted	EBH5 collected at 0.0-0.2m
0.2-0.6	CI	Silty CLAY: medium plasticity, brown, trace ironstone pieces	Moist	Firm to Stiff	Groundwater was not encountered

EBH6 - Log

Depth (m)	Symbol	Material Description	Moisture	Consistency/Density	Field Notes
0.0-0.2	-	TOPSOIL: Silty CLAY, dark brown, with sandstone pieces and rootlets	Moist to Wet	Moderately Compacted	EBH6 collected at 0.0-0.3m
0.2-0.5	CI	Silty CLAY: medium plasticity, brown	Moist	Firm	Groundwater was not encountered

EBH7 - Log

Depth	Symbol	Material Description	Moisture	Consistency/Density	Field Notes
-------	--------	----------------------	----------	---------------------	-------------

PSI REPORT - 13L and Lot 7 DP223428 Narromine Rd, Dubbo NSW 2830

NE1295

(m)					
0.0-0.2	-	TOPSOIL: Silty CLAY, dark brown, with rootlets and boulders and crushed sandstones	Moist to Wet	Moderately Compacted	EBH7 collected at 0.0-0.2m
0.2-0.4	CI	Silty CLAY: medium plasticity, brown	Moist	Firm	Groundwater was not encountered

EBH8 - Log

Depth (m)	Symbol	Material Description	Moisture	Consistency/Density	Field Notes
0.0-0.2	-	TOPSOIL: Silty CLAY, dark brown, with rootlets	Moist to Wet	Poorly Compacted	EBH8 collected at 0.0-0.3m
0.2-0.5	CI	Silty CLAY: medium plasticity, brown	Moist	Firm	Groundwater was not encountered

EBH9 - Log

Depth (m)	Symbol	Material Description	Moisture	Consistency/Density	Field Notes
0.0-0.2	-	TOPSOIL: Silty CLAY, dark brown, with rootlets	Moist to Wet	Poorly Compacted	EBH9 collected at 0.0-0.4m
0.2-0.6	CI	Silty CLAY: medium plasticity, brown	Moist	Firm	Groundwater was not encountered

EBH10 - Log

Depth	Symbol	Material Description	Moisture	Consistency/Density	Field Notes
(m)	Symbol		Wolsture	Consistency/Density	Tielu Notes

PSI REPORT - 13L and Lot 7 DP223428 Narromine Rd, Dubbo NSW 2830 NE1295

0.0-0.2	-	TOPSOIL: Silty CLAY, dark brown, with grass rootlets	Moist to Wet	Poorly Compacted	EBH10 collected at 0.0-0.3m
0.2-0.5	CI	Silty CLAY: medium plasticity, brown	Moist	Firm	Groundwater was not encountered

EBH11 - Log

Depth (m)	Symbol	Material Description	Moisture	Consistency/Density	Field Notes
0.0-0.2	-	TOPSOIL: Silty CLAY, dark brown, with sandstone fragments	Moist to Wet	Poorly Compacted	EBH11 collected at 0.0-0.3m
0.2-0.5	CI	Silty CLAY: medium plasticity, brown	Moist	Firm	Groundwater was not encountered

EBH12 - Log

Depth (m)	Symbol	Material Description	Moisture	Consistency/Density	Field Notes
0.0-0.2	-	TOPSOIL: Silty CLAY, dark brown, with rootlets	Moist to Wet	Poorly Compacted	EBH12 collected at 0.0-0.3m
0.2-0.5	CI	Silty CLAY: medium plasticity, brown	Moist	Firm	Groundwater was not encountered

Appendix E Laboratory Results

Laboratory Use Only		Method of Shipment																															Ŧ	Quote ID Nº	>	Special Direction	Phone Nº	Contact Name	Address	Company	
Received By	Received By	Courier (#		Asb-14-1	Asb-13-1	Asb-12-1	Asb-11-1	Asb-7-1	DI-13-1	DI-12-1	DH11-2	DI-11-1	Di-10-2	Di-10-1	60	Di-9	DI-8-1	Di-7-2	D-7-1	Di-6-2	56	迈충	Di-5-1	D.	Di 4-3	₽	Di-3-3	Di-3-2	DI3	Di-2-3	01-2-1	Di-1-1	Client Sample ID				452454418	Dr. Mohamma	6/20-22 Found	Geotesta	»
	Lim				-						-																_											Dr. Nohammad Hossein Bazyar	6/20-22 Foundary Road, Seven Hills		
		~	Total Counts	1/02/22	1/02/22	1/02/22	1/02/22	1/02/22	1/02/22	1/02/22	1/02/22	1/02/22	1/02/22	1/02/22	1/02/22	1/02/22	1/02/22	1/02/22	1/02/22	1/02/22	1/02/22	1/02/22	1/02/22	1/02/22	1/02/22	1/02/22	1/02/22	1/02/22	1/02/22	1/02/22	1/02/22	1/02/22	Date					cyar	ren Hills		
		Hand Delivered	5	Soil	Sol	Soil	Sol	Soil	Soil	Soil	Soli	Soil	Soil	Soil	Soli	Soil	Soll	Soll	50	Soil	55	Soil	Soli	Soil	Sol	Soil	Soli	Soil	Soil	Soil	Solf	Soil	Matrix	NMC Wrone	metals are re	Analysis	e geofi ****	lal' cr "File	Projec	Proj	2
	BNE MEL PER ADL NEW		6 1						×	×	×	×				×	-		×																Su	ite B10		_	Project Name 13		
o I ane i mel i per i adl i new i	I PER AD	Fusial	18 5										×	×	×		×	××		××	×	××	×	×	×	××	×	×	×	×	×	×		_		vy Metals			13L. Narromine Road, Dubbo		NE1167
- NEW	I I NEW	Name												×			×			~		×	×			^	×		×		×				_	TRH			e Road, Di		
Simphire	Signature		*																				1		×			×		×		×				PAH			ibbo		
	sture		=															2			4			×											E	ITEX					
	Lin		en.	×	×	×	×	×															-												As	bestos			Report Format	Project Manager	Section 1
-	5			_													-																			h. Ec			ormat	anager	
		Signature		_						3																					_				Su	lphate			_		
Date	Date																																								
	112/22																																								
	Time	Date																																1L PI 250mL 125mL	Plastic Plastic		2	Email for Results	Relinquished by		
	H 370	_/_/																																200mL Am 40ml 125mL Am Jil	lvial ber Glass		Containers	1			
Report Ne	Temperature	Time																																o vay Other (1 Day*	Overnight (9am)*	Turn Arou				
2	2.2	ľ																															le Comments / .zard Warning	- 5 Day	2 Day*	(9am)*	Turn Around Requirements				

Geotesta Pty Ltd (NSW) Unit 6, 20/22 Foundry Road Seven Hills NSW 2147

NATA

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention:

- Mohammad Hossein Bazyar

Report Project name Project ID Received Date 860033-S 13 L NARROMINE RD DUBBO NE1167 Feb 01, 2022

Client Sample ID			DI-1-1	DI-2-1	DI-2-3	DI-3
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S22-Fe03201	S22-Fe03202	S22-Fe03203	S22-Fe03204
Date Sampled			Feb 01, 2022	Feb 01, 2022	Feb 01, 2022	Feb 01, 2022
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons	ł	-1				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	-	0.6	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	-	1.2	-
Acenaphthene	0.5	mg/kg	< 0.5	-	< 0.5	-
Acenaphthylene	0.5	mg/kg	< 0.5	-	< 0.5	-
Anthracene	0.5	mg/kg	< 0.5	-	< 0.5	-
Benz(a)anthracene	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzo(a)pyrene	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	-	< 0.5	-
Chrysene	0.5	mg/kg	< 0.5	-	< 0.5	-
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	-	< 0.5	-
Fluoranthene	0.5	mg/kg	< 0.5	-	< 0.5	-
Fluorene	0.5	mg/kg	< 0.5	-	< 0.5	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	-	< 0.5	-
Naphthalene	0.5	mg/kg	< 0.5	-	< 0.5	-
Phenanthrene	0.5	mg/kg	< 0.5	-	< 0.5	-
Pyrene	0.5	mg/kg	< 0.5	-	< 0.5	-
Total PAH*	0.5	mg/kg	< 0.5	-	< 0.5	-
2-Fluorobiphenyl (surr.)	1	%	98	-	100	-
p-Terphenyl-d14 (surr.)	1	%	111	-	121	-
Heavy Metals		_				
Arsenic	2	mg/kg	3.2	4.3	3.7	7.2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	88	99	91	160
Copper	5	mg/kg	15	28	30	33
Lead	5	mg/kg	10	14	12	8.9
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	30	70	80	100
Zinc	5	mg/kg	24	45	54	37
% Moisture	1	%	7.2	4.5	7.1	14

Client Sample ID Sample Matrix Eurofins Sample No.			DI-1-1 Soil S22-Fe03201	DI-2-1 Soil S22-Fe03202	DI-2-3 Soil S22-Fe03203	DI-3 Soil S22-Fe03204
Date Sampled			Feb 01, 2022	Feb 01, 2022	Feb 01, 2022	Feb 01, 2022
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	-	< 20	-	< 20
TRH C10-C14	20	mg/kg	-	< 20	-	< 20
TRH C15-C28	50	mg/kg	-	< 50	-	< 50
TRH C29-C36	50	mg/kg	-	64	-	< 50
TRH C10-C36 (Total)	50	mg/kg	-	64	-	< 50
Naphthalene ^{N02}	0.5	mg/kg	-	< 0.5	-	< 0.5
TRH C6-C10	20	mg/kg	-	< 20	-	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	-	< 20	-	< 20
TRH >C10-C16	50	mg/kg	-	< 50	-	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	-	< 50	-	< 50
TRH >C16-C34	100	mg/kg	-	< 100	-	< 100
TRH >C34-C40	100	mg/kg	-	< 100	-	< 100
TRH >C10-C40 (total)*	100	mg/kg	-	< 100	-	< 100

Client Sample ID			DI-3-2	DI-3-3	DI-4	DI-4-3
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S22-Fe03205	S22-Fe03206	S22-Fe03207	S22-Fe03208
Date Sampled			Feb 01, 2022	Feb 01, 2022	Feb 01, 2022	Feb 01, 2022
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	-	-	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	-	-	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	-	-	1.2
Acenaphthene	0.5	mg/kg	< 0.5	-	-	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	-	-	< 0.5
Anthracene	0.5	mg/kg	< 0.5	-	-	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	-	-	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	-	-	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	-	-	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	-	-	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	-	-	< 0.5
Chrysene	0.5	mg/kg	< 0.5	-	-	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	-	-	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	-	-	< 0.5
Fluorene	0.5	mg/kg	< 0.5	-	-	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	-	-	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	-	-	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	-	-	< 0.5
Pyrene	0.5	mg/kg	< 0.5	-	-	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	-	-	< 0.5
2-Fluorobiphenyl (surr.)	1	%	94	-	-	99
p-Terphenyl-d14 (surr.)	1	%	106	-	-	94
Heavy Metals						
Arsenic	2	mg/kg	6.5	7.2	3.6	3.3
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	52	74	28	42
Copper	5	mg/kg	19	23	11	15
Lead	5	mg/kg	12	10	10	8.3

Client Sample ID			DI-3-2 Soil	DI-3-3 Soil	DI-4 Soil	DI-4-3 Soil
Sample Matrix						
Eurofins Sample No.			S22-Fe03205	S22-Fe03206	S22-Fe03207	S22-Fe03208
Date Sampled			Feb 01, 2022	Feb 01, 2022	Feb 01, 2022	Feb 01, 2022
Test/Reference	LOR	Unit				
Heavy Metals						
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	42	60	46	28
Zinc	5	mg/kg	52	62	30	34
% Moisture	1	%	7.0	6.2	11	12
		70	7.0	0.2		12
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	-	< 20	-	-
TRH C10-C14	20	mg/kg	-	< 20	-	-
TRH C15-C28	50	mg/kg	-	< 50	-	-
TRH C29-C36	50	mg/kg	-	61	-	-
TRH C10-C36 (Total)	50	mg/kg	-	61	-	-
Naphthalene ^{N02}	0.5	mg/kg	-	< 0.5	-	-
	20	mg/kg	-	< 20	-	-
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	-	< 20	-	-
TRH >C10-C16	50	mg/kg	-	< 50	-	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	-	< 50	-	-
TRH >C16-C34	100	mg/kg	-	< 100	-	-
TRH >C34-C40	100	mg/kg	-	< 100	-	-
TRH >C10-C40 (total)*	100	mg/kg	-	< 100	-	-
Organochlorine Pesticides			-			
Chlordanes - Total	0.1	mg/kg	-	-	< 0.1	-
4.4'-DDD	0.05	mg/kg	-	-	< 0.05	-
4.4'-DDE	0.05	mg/kg	-	-	< 0.05	-
4.4'-DDT	0.05	mg/kg	-	-	< 0.05	-
a-HCH	0.05	mg/kg	-	-	< 0.05	-
Aldrin	0.05	mg/kg	-	-	< 0.05	-
b-HCH	0.05	mg/kg	-	-	< 0.05	-
d-HCH	0.05	mg/kg	-	-	< 0.05	-
Dieldrin	0.05	mg/kg	-	-	< 0.05	-
Endosulfan I	0.05	mg/kg	-	-	< 0.05	-
Endosulfan II	0.05	mg/kg	-	-	< 0.05	-
Endosulfan sulphate	0.05	mg/kg	-	-	< 0.05	-
Endrin	0.05	mg/kg	-	-	< 0.05	-
Endrin aldehyde	0.05	mg/kg	-	-	< 0.05	-
Endrin ketone	0.05	mg/kg	-	-	< 0.05	-
g-HCH (Lindane)	0.05	mg/kg	-	-	< 0.05	-
Heptachlor	0.05	mg/kg	-	-	< 0.05	-
Heptachlor epoxide	0.05	mg/kg	-	-	< 0.05	-
Hexachlorobenzene	0.05	mg/kg	-	-	< 0.05	-
Methoxychlor	0.05	mg/kg	-	-	< 0.05	-
Toxaphene	0.5	mg/kg	-	-	< 0.5	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	-	< 0.05	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	-	< 0.05	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	-	< 0.1	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	-	< 0.1	-
Dibutylchlorendate (surr.)	1	%	-	-	82	-
Tetrachloro-m-xylene (surr.)	1	%	-	-	83	-

Client Sample ID			DI-3-2	DI-3-3	DI-4	DI-4-3
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S22-Fe03205	S22-Fe03206	S22-Fe03207	S22-Fe03208
Date Sampled			Feb 01, 2022	Feb 01, 2022	Feb 01, 2022	Feb 01, 2022
Test/Reference	LOR	Unit				
Organophosphorus Pesticides						
Azinphos-methyl	0.2	mg/kg	-	-	< 0.2	-
Bolstar	0.2	mg/kg	-	-	< 0.2	-
Chlorfenvinphos	0.2	mg/kg	-	-	< 0.2	-
Chlorpyrifos	0.2	mg/kg	-	-	< 0.2	-
Chlorpyrifos-methyl	0.2	mg/kg	-	-	< 0.2	-
Coumaphos	2	mg/kg	-	-	< 2	-
Demeton-S	0.2	mg/kg	-	-	< 0.2	-
Demeton-O	0.2	mg/kg	-	-	< 0.2	-
Diazinon	0.2	mg/kg	-	-	< 0.2	-
Dichlorvos	0.2	mg/kg	-	-	< 0.2	-
Dimethoate	0.2	mg/kg	-	-	< 0.2	-
Disulfoton	0.2	mg/kg	-	-	< 0.2	-
EPN	0.2	mg/kg	-	-	< 0.2	-
Ethion	0.2	mg/kg	-	-	< 0.2	-
Ethoprop	0.2	mg/kg	-	-	< 0.2	-
Ethyl parathion	0.2	mg/kg	-	-	< 0.2	-
Fenitrothion	0.2	mg/kg	-	-	< 0.2	-
Fensulfothion	0.2	mg/kg	-	-	< 0.2	-
Fenthion	0.2	mg/kg	_	-	< 0.2	-
Malathion	0.2	mg/kg	_	-	< 0.2	-
Merphos	0.2	mg/kg	_	-	< 0.2	-
Methyl parathion	0.2	mg/kg	_	-	< 0.2	-
Mevinphos	0.2	mg/kg	_	-	< 0.2	-
Monocrotophos	2	mg/kg	_	-	< 2	-
Naled	0.2	mg/kg	-	-	< 0.2	-
Omethoate	2	mg/kg	-	-	< 2	-
Phorate	0.2	mg/kg	-	-	< 0.2	-
Pirimiphos-methyl	0.2	mg/kg	-	-	< 0.2	-
Pyrazophos	0.2	mg/kg	-	-	< 0.2	-
Ronnel	0.2	mg/kg	-	-	< 0.2	-
Terbufos	0.2	mg/kg	-	-	< 0.2	-
Tetrachlorvinphos	0.2	mg/kg	-	-	< 0.2	-
Tokuthion	0.2	mg/kg	-	-	< 0.2	_
Trichloronate	0.2	mg/kg	-	-	< 0.2	_
Triphenylphosphate (surr.)	1	%	_	_	82	-

Client Sample ID			DI-5	DI-5-1	DI-6	D-6-2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S22-Fe03209	S22-Fe03210	S22-Fe03211	S22-Fe03212
Date Sampled			Feb 01, 2022	Feb 01, 2022	Feb 01, 2022	Feb 01, 2022
Test/Reference	LOR	Unit				
Heavy Metals						
Arsenic	2	mg/kg	6.6	5.3	4.3	3.2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	160	120	83	200
Copper	5	mg/kg	32	22	17	42
Lead	5	mg/kg	14	12	14	9.8
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1

Client Sample ID Sample Matrix			DI-5 Soil	DI-5-1 Soil	DI-6 Soil	D-6-2 Soil
Eurofins Sample No.			S22-Fe03209	S22-Fe03210	S22-Fe03211	S22-Fe03212
Date Sampled			Feb 01, 2022	Feb 01, 2022	Feb 01, 2022	Feb 01, 2022
•		11.2	Feb 01, 2022	reb 01, 2022	reb 01, 2022	Feb 01, 2022
Test/Reference	LOR	Unit				
Heavy Metals						
Nickel	5	mg/kg	71	57	37	130
Zinc	5	mg/kg	33	40	19	64
% Moisture	1	%	13	11	15	12
Total Recoverable Hydrocarbons	•	70	10		10	12
TRH C6-C9	20	mg/kg	-	< 20	< 20	-
TRH C10-C14	20	mg/kg		< 20	< 20	-
TRH C15-C28	50	mg/kg	-	56	< 50	
TRH C13-C28	50			140	< 50	
TRH C10-C36 (Total)	50	mg/kg	-	140	< 50	
Naphthalene ^{$N02$}	0.5	mg/kg mg/kg	-	< 0.5	< 0.5	-
TRH C6-C10	20		-	< 0.5	< 0.5	-
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg		< 20	< 20	-
TRH >C10-C10 less BTEX (F1)	50	mg/kg	-			
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	-	< 50	< 50	-
		mg/kg	-	< 50	< 50	-
TRH >C16-C34	100	mg/kg	-	150	< 100	-
TRH >C34-C40	100	mg/kg	-	< 100	< 100	-
TRH >C10-C40 (total)*	100	mg/kg	-	150	< 100	-
Organochlorine Pesticides		"				
Chlordanes - Total	0.1	mg/kg	-	-	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	-	-	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	-	-	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	-	-	< 0.05	< 0.05
а-НСН	0.05	mg/kg	-	-	< 0.05	< 0.05
Aldrin	0.05	mg/kg	-	-	< 0.05	< 0.05
b-HCH	0.05	mg/kg	-	-	< 0.05	< 0.05
d-HCH	0.05	mg/kg	-	-	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	-	-	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	-	-	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	-	-	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	-	-	< 0.05	< 0.05
Endrin	0.05	mg/kg	-	-	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	-	-	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	-	-	< 0.05	< 0.05
g-HCH (Lindane)	0.05	mg/kg	-	-	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	-	-	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	-	-	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	-	-	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	-	-	< 0.05	< 0.05
Toxaphene	0.5	mg/kg	-	-	< 0.5	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	-	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	-	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	-	< 0.1	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	-	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	-	-	102	82
Tetrachloro-m-xylene (surr.)	1	%	-	-	98	103

Client Sample ID			DI-5	DI-5-1	DI-6	D-6-2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S22-Fe03209	S22-Fe03210	S22-Fe03211	S22-Fe03212
Date Sampled			Feb 01, 2022	Feb 01, 2022	Feb 01, 2022	Feb 01, 2022
Test/Reference	LOR	Unit				
Organophosphorus Pesticides	I					
Azinphos-methyl	0.2	mg/kg	-	_	< 0.2	< 0.2
Bolstar	0.2	mg/kg	-	-	< 0.2	< 0.2
Chlorfenvinphos	0.2	mg/kg	-	-	< 0.2	< 0.2
Chlorpyrifos	0.2	mg/kg	-	-	< 0.2	< 0.2
Chlorpyrifos-methyl	0.2	mg/kg	-	-	< 0.2	< 0.2
Coumaphos	2	mg/kg	-	-	< 2	< 2
Demeton-S	0.2	mg/kg	-	-	< 0.2	< 0.2
Demeton-O	0.2	mg/kg	-	-	< 0.2	< 0.2
Diazinon	0.2	mg/kg	-	-	< 0.2	< 0.2
Dichlorvos	0.2	mg/kg	-	-	< 0.2	< 0.2
Dimethoate	0.2	mg/kg	-	-	< 0.2	< 0.2
Disulfoton	0.2	mg/kg	-	-	< 0.2	< 0.2
EPN	0.2	mg/kg	-	-	< 0.2	< 0.2
Ethion	0.2	mg/kg	-	-	< 0.2	< 0.2
Ethoprop	0.2	mg/kg	-	-	< 0.2	< 0.2
Ethyl parathion	0.2	mg/kg	-	-	< 0.2	< 0.2
Fenitrothion	0.2	mg/kg	-	-	< 0.2	< 0.2
Fensulfothion	0.2	mg/kg	-	-	< 0.2	< 0.2
Fenthion	0.2	mg/kg	-	-	< 0.2	< 0.2
Malathion	0.2	mg/kg	-	-	< 0.2	< 0.2
Merphos	0.2	mg/kg	-	-	< 0.2	< 0.2
Methyl parathion	0.2	mg/kg	-	-	< 0.2	< 0.2
Mevinphos	0.2	mg/kg	-	-	< 0.2	< 0.2
Monocrotophos	2	mg/kg	-	-	< 2	< 2
Naled	0.2	mg/kg	-	-	< 0.5	< 0.5
Omethoate	2	mg/kg	-	-	< 2	< 2
Phorate	0.2	mg/kg	-	-	< 0.2	< 0.2
Pirimiphos-methyl	0.2	mg/kg	-	-	< 0.2	< 0.2
Pyrazophos	0.2	mg/kg	-	-	< 0.2	< 0.2
Ronnel	0.2	mg/kg	-	-	< 0.2	< 0.2
Terbufos	0.2	mg/kg	-	-	< 0.2	< 0.2
Tetrachlorvinphos	0.2	mg/kg	-	-	< 0.2	< 0.2
Tokuthion	0.2	mg/kg	-	-	< 0.2	< 0.2
Trichloronate	0.2	mg/kg	-	-	< 0.2	< 0.2
Triphenylphosphate (surr.)	1	%	-	-	100	92
BTEX	L					
Benzene	0.1	mg/kg	< 0.1	-	-	-
Toluene	0.1	mg/kg	< 0.1	-	-	-
Ethylbenzene	0.1	mg/kg	< 0.1	-	_	-
m&p-Xylenes	0.2	mg/kg	< 0.2	-	_	-
o-Xylene	0.1	mg/kg	< 0.1	-	_	-
Xylenes - Total*	0.3	mg/kg	< 0.3	-	-	-
4-Bromofluorobenzene (surr.)	1	%	82	-	-	_

Client Sample ID			DI-7-1	DI-7-2	DI-8-1	DI-9
Sample Matrix			Soil	Soil	Soil	Soil
· ·					S22-Fe03215	
Eurofins Sample No.			S22-Fe03213	S22-Fe03214		S22-Fe03216
Date Sampled			Feb 01, 2022	Feb 01, 2022	Feb 01, 2022	Feb 01, 2022
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons		1				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	-	-	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	-	-	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	-	-	1.2
Acenaphthene	0.5	mg/kg	< 0.5	-	-	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	-	-	< 0.5
Anthracene	0.5	mg/kg	< 0.5	-	-	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	-	-	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	-	-	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	-	-	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	-	-	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	-	-	< 0.5
Chrysene	0.5	mg/kg	< 0.5	-	-	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	-	-	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	-	-	< 0.5
Fluorene	0.5	mg/kg	< 0.5	-	-	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	-	-	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	-	-	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	-	-	< 0.5
Pyrene	0.5	mg/kg	< 0.5	-	-	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	-	-	< 0.5
2-Fluorobiphenyl (surr.)	1	%	106	-	-	88
p-Terphenyl-d14 (surr.)	1	%	115	-	-	90
Heavy Metals						
Arsenic	2	mg/kg	7.8	7.5	6.3	4.5
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	53	99	130	74
Copper	5	mg/kg	15	33	15	18
Lead	5	mg/kg	10	15	13	10
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	44	65	56	58
Zinc	5	mg/kg	33	63	29	35
		-				
% Moisture	1	%	9.3	18	3.0	18
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	< 20	-	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	-	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	-	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	-	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	-	< 50	< 50
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	-	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	-	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	-	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	-	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	-	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	-	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	-	< 100	< 100

Client Sample ID			DI-7-1	DI-7-2	DI-8-1	DI-9
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S22-Fe03213	S22-Fe03214	S22-Fe03215	S22-Fe03216
Date Sampled			Feb 01, 2022	Feb 01, 2022	Feb 01, 2022	Feb 01, 2022
Test/Reference	LOR	Unit	, i		, i	
Organochlorine Pesticides	2011	01110				
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
a-HCH	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
b-HCH	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
d-HCH	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
g-HCH (Lindane)	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
Toxaphene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
Dibutylchlorendate (surr.)	1	%	121	108	-	92
Tetrachloro-m-xylene (surr.)	1	%	118	103	-	93
Organophosphorus Pesticides				_		_
Azinphos-methyl	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2
Bolstar	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2
Chlorfenvinphos	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2
Chlorpyrifos	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2
Coumaphos	2	mg/kg	< 2	< 2	-	< 2
Demeton-S	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2
Demeton-O	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2
Diazinon	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2
Dichlorvos	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2
Dimethoate	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2
Disulfoton	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2
EPN	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2
Ethion	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2
Ethoprop	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2
Ethyl parathion	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2
Fenitrothion	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2
Fensulfothion	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2
Fenthion	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2
Malathion	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2
Merphos	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2

Client Sample ID			DI-7-1	DI-7-2	DI-8-1	DI-9
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S22-Fe03213	S22-Fe03214	S22-Fe03215	S22-Fe03216
Date Sampled			Feb 01, 2022	Feb 01, 2022	Feb 01, 2022	Feb 01, 2022
Test/Reference	LOR	Unit				
Organophosphorus Pesticides						
Methyl parathion	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2
Mevinphos	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2
Monocrotophos	2	mg/kg	< 2	< 2	-	< 2
Naled	0.2	mg/kg	< 0.5	< 0.5	-	< 0.5
Omethoate	2	mg/kg	< 2	< 2	-	< 2
Phorate	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2
Pirimiphos-methyl	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2
Pyrazophos	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2
Ronnel	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2
Terbufos	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2
Tetrachlorvinphos	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2
Tokuthion	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2
Trichloronate	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2
Triphenylphosphate (surr.)	1	%	124	116	-	96
BTEX						
Benzene	0.1	mg/kg	< 0.1	-	-	< 0.1
Toluene	0.1	mg/kg	< 0.1	-	-	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	-	-	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	-	-	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	-	-	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	-	-	< 0.3
4-Bromofluorobenzene (surr.)	1	%	62	-	-	104

Client Sample ID Sample Matrix			D-9 Soil	DI-10-1 Soil	DI-10-2 Soil	^{G01} DI-11-1 Soil
Eurofins Sample No.			S22-Fe03217	S22-Fe03218	S22-Fe03219	S22-Fe03220
Date Sampled			Feb 01, 2022	Feb 01, 2022	Feb 01, 2022	Feb 01, 2022
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	-	-	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	-	-	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	-	-	1.2
Acenaphthene	0.5	mg/kg	-	-	-	< 0.5
Acenaphthylene	0.5	mg/kg	-	-	-	< 0.5
Anthracene	0.5	mg/kg	-	-	-	< 0.5
Benz(a)anthracene	0.5	mg/kg	-	-	-	< 0.5
Benzo(a)pyrene	0.5	mg/kg	-	-	-	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	-	-	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	-	-	-	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	-	-	-	< 0.5
Chrysene	0.5	mg/kg	-	-	-	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	-	-	-	< 0.5
Fluoranthene	0.5	mg/kg	-	-	-	< 0.5
Fluorene	0.5	mg/kg	-	-	-	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	-	-	< 0.5
Naphthalene	0.5	mg/kg	-	-	-	< 0.5
Phenanthrene	0.5	mg/kg	-	-	-	< 0.5
Pyrene	0.5	mg/kg	-	-	-	< 0.5

						C01-1-1-1
Client Sample ID			D-9	DI-10-1	DI-10-2	^{G01} DI-11-1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S22-Fe03217	S22-Fe03218	S22-Fe03219	S22-Fe03220
Date Sampled			Feb 01, 2022	Feb 01, 2022	Feb 01, 2022	Feb 01, 2022
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Total PAH*	0.5	mg/kg	-	-	-	< 0.5
2-Fluorobiphenyl (surr.)	1	%	-	-	-	101
p-Terphenyl-d14 (surr.)	1	%	-	-	-	88
Heavy Metals						
Arsenic	2	mg/kg	3.6	3.9	4.1	3.6
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	53	91	120	110
Copper	5	mg/kg	15	22	21	25
Lead	5	mg/kg	8.9	15	15	13
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	47	52	48	80
Zinc	5	mg/kg	29	34	33	150
% Moisture	1	%	18	3.5	6.4	8.8
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	-	< 20	-	< 20
TRH C10-C14	20	mg/kg	-	< 20	-	91
TRH C15-C28	50	mg/kg	-	< 50	-	930
TRH C29-C36	50	mg/kg	-	< 50	-	390
TRH C10-C36 (Total)	50	mg/kg	-	< 50	-	1411
Naphthalene ^{N02}	0.5	mg/kg	-	< 0.5	-	< 0.5
TRH C6-C10	20	mg/kg	-	< 20	-	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	-	< 20	-	< 20
TRH >C10-C16	50	mg/kg	-	< 50	-	100
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	-	< 50	-	100
TRH >C16-C34	100	mg/kg	-	< 100	-	1200
TRH >C34-C40	100	mg/kg	-	< 100	-	200
TRH >C10-C40 (total)*	100	mg/kg	-	< 100	-	1500
Organochlorine Pesticides						_
Chlordanes - Total	0.1	mg/kg	-	-	< 0.1	< 1
4.4'-DDD	0.05	mg/kg	-	-	< 0.05	< 0.5
4.4'-DDE	0.05	mg/kg	-	-	< 0.05	< 0.5
4.4'-DDT	0.05	mg/kg	-	-	< 0.05	< 0.5
a-HCH	0.05	mg/kg	-	-	< 0.05	< 0.5
Aldrin	0.05	mg/kg	-	-	< 0.05	< 0.5
b-HCH	0.05	mg/kg	-	-	< 0.05	< 0.5
d-HCH	0.05	mg/kg	-	-	< 0.05	< 0.5
Dieldrin	0.05	mg/kg	-	-	< 0.05	< 0.5
Endosulfan I	0.05	mg/kg	-	-	< 0.05	< 0.5
Endosulfan II	0.05	mg/kg	-	-	< 0.05	< 0.5
Endosulfan sulphate	0.05	mg/kg	-	-	< 0.05	< 0.5
Endrin	0.05	mg/kg	-	-	< 0.05	< 0.5
Endrin aldehyde	0.05	mg/kg	-	-	< 0.05	< 0.5
Endrin ketone	0.05	mg/kg	-	-	< 0.05	< 0.5
g-HCH (Lindane)	0.05	mg/kg	-	-	< 0.05	< 0.5
Heptachlor	0.05	mg/kg	-	-	< 0.05	< 0.5
Heptachlor epoxide	0.05	mg/kg	-	-	< 0.05	< 0.5
Hexachlorobenzene	0.05	mg/kg	-	-	< 0.05	< 0.5
Methoxychlor	0.05	mg/kg	-	-	< 0.05	< 0.5

Other mg/kg DDT + DDE + DDD (Total)* 0.05 mg/kg Vic EPA IWRG 621 OCP (Total)* 0.1 mg/kg Vic EPA IWRG 621 Other OCP (Total)* 0.1 mg/kg Dibutylchlorendate (surr.) 1 % Tetrachloro-m-xylene (surr.) 1 % Organophosphorus Pesticides		DI-10-2 Soil	^{G01} DI-11-1
Eurorins Sample No.S22-FeDate SampledFeb 01,Test/ReferenceLORUnitOrganochlorine Pesticides0.5mg/kgAldrin and Dieldrin (Total)*0.05mg/kgDDT + DDE + DDD (Total)*0.05mg/kgVic EPA IWRG 621 OCP (Total)*0.1mg/kgVic EPA IWRG 621 Other OCP (Total)*0.1mg/kgDibutylchlorendate (surr.)1%Organophosphorus Pesticides	03217 S22-Fe03218	Soil	1
Date Sampled Feb 01, Test/Reference LOR Unit Organochlorine Pesticides 0.5 mg/kg Toxaphene 0.5 mg/kg Aldrin and Dieldrin (Total)* 0.05 mg/kg DDT + DDE + DDD (Total)* 0.1 mg/kg Vic EPA IWRG 621 OCP (Total)* 0.1 mg/kg Dibutylchlorendate (surr.) 1 % Organophosphorus Pesticides			Soil
Test/ReferenceLORUnitOrganochlorine Pesticides0.5mg/kgToxaphene0.5mg/kgAldrin and Dieldrin (Total)*0.05mg/kgDDT + DDE + DDD (Total)*0.1mg/kgVic EPA IWRG 621 OCP (Total)*0.1mg/kgDibutylchlorendate (surr.)1%Tetrachloro-m-xylene (surr.)1%Organophosphorus Pesticides0.2mg/kgAzinphos-methyl0.2mg/kgBolstar0.2mg/kgChlorpyrifos-methyl0.2mg/kgChlorpyrifos-methyl0.2mg/kgCoumaphos0.2mg/kgCoumaphos0.2mg/kgDemeton-S0.2mg/kgDienton-O0.2mg/kgDienton-O0.2mg/kgDientono0.2mg/kgDientono0.2mg/kgDientono0.2mg/kgDientono0.2mg/kgDisulfoton0.2mg/kgEthoprop0.2mg/kgEthoprop0.2mg/kgEthoprop0.2mg/kgEthoprop0.2mg/kgFensulfothion0.2mg/kgFensulfothion0.2mg/kgEthoprop0.2mg/kgEthoprop0.2mg/kgEthoprop0.2mg/kgMalathion0.2mg/kgMerinohio0.2mg/kgMethyl parathion0.2mg/kgMethyl parathion0.2<	2022 Feb 01, 2022	S22-Fe03219	S22-Fe03220
Organochlorine PesticidesToxaphene0.5mg/kgAldrin and Dieldrin (Total)*0.05mg/kgDDT + DDE + DDD (Total)*0.05mg/kgVic EPA IWRG 621 OCP (Total)*0.1mg/kgVic EPA IWRG 621 Other OCP (Total)*0.1mg/kgDibutylchlorendate (surr.)1%Tetrachloro-m-xylene (surr.)1%Organophosphorus Pesticides0.2mg/kgBolstar0.2mg/kgChlorpyrifos0.2mg/kgChlorpyrifos-methyl0.2mg/kgCoumaphos0.2mg/kgCoumaphos0.2mg/kgDemeton-O0.2mg/kgDiazinon0.2mg/kgDisulfoton0.2mg/kgDisulfoton0.2mg/kgEthorpop0.2mg/kgDiazinon0.2mg/kgDisulfoton0.2mg/kgEthorop0.2mg/kgEthorop0.2mg/kgEthorop0.2mg/kgEthorop0.2mg/kgEthorop0.2mg/kgFenitrothion0.2mg/kgFenitothion0.2mg/kgMalathion0.2mg/kgMalathion0.2mg/kgMonocrotophos0.2mg/kgMonocrotophos0.2mg/kgMontotophos0.2mg/kgMontotophos0.2mg/kgMalathion0.2mg/kgMonocrotophos0.2<		Feb 01, 2022	Feb 01, 2022
Toxaphene 0.5 mg/kg Aldrin and Dieldrin (Total)* 0.05 mg/kg DDT + DDE + DDD (Total)* 0.1 mg/kg Vic EPA IWRG 621 OCP (Total)* 0.1 mg/kg Dibutylchlorendate (surr.) 1 % Tetrachloro-m-xylene (surr.) 1 % Azinphos-methyl 0.2 mg/kg Bolstar 0.2 mg/kg Chlorfenvinphos 0.2 mg/kg Chlorpyrifos-methyl 0.2 mg/kg Chlorpyrifos 0.2 mg/kg Demeton-S 0.2 mg/kg Demeton-O 0.2 mg/kg Dializion 0.2 mg/kg Distofton 0.2 mg/kg Distron 0.2 <			
Aldrin and Dieldrin (Total)* 0.05 mg/kg DDT + DDE + DDD (Total)* 0.05 mg/kg Vic EPA IWRG 621 OCP (Total)* 0.1 mg/kg Dibutylchlorendate (surr.) 1 % Tetrachloro-m-xylene (surr.) 1 % Organophosphorus Pesticides			
DDT + DDE + DDD (Total)* 0.05 mg/kg Vic EPA IWRG 621 OCP (Total)* 0.1 mg/kg Dibutylchlorendate (surr.) 1 % Tetrachloro-m-xylene (surr.) 1 % Organophosphorus Pesticides		< 0.5	< 10
Vic EPA IWRG 621 OCP (Total)* 0.1 mg/kg Vic EPA IWRG 621 Other OCP (Total)* 0.1 mg/kg Dibutylchlorendate (surr.) 1 % Tetrachloro-m-xylene (surr.) 1 % Organophosphorus Pesticides 0.2 mg/kg Azinphos-methyl 0.2 mg/kg Bolstar 0.2 mg/kg Chlorfenvinphos 0.2 mg/kg Chlorpyrifos 0.2 mg/kg Coumaphos 2 mg/kg Demeton-S 0.2 mg/kg Diazinon 0.2 mg/kg Dichlorvos 0.2 mg/kg Disulfoton 0.2 mg/kg Disulfoton 0.2 mg/kg Ethion 0.2 mg/kg Ethoprop 0.2 mg/kg Ethoprop 0.2 mg/kg Ethoprop 0.2 mg/kg Fensulfothion 0.2 mg/kg Fersulfothion 0.2 mg/kg Malathion 0.2		< 0.05	< 0.5
Vic EPA IWRG 621 Other OCP (Total)* 0.1 mg/kg Dibutylchlorendate (surr.) 1 % Tetrachloro-m-xylene (surr.) 1 % Organophosphorus Pesticides 0.2 mg/kg Bolstar 0.2 mg/kg Chlorfenvinphos 0.2 mg/kg Chlorfenvinphos 0.2 mg/kg Chlorpyrifos-methyl 0.2 mg/kg Coumaphos 2 mg/kg Demeton-S 0.2 mg/kg Diazinon 0.2 mg/kg Dischlorvos 0.2 mg/kg Disulfoton 0.2 mg/kg Disulfoton 0.2 mg/kg Ethion 0.2 mg/kg Ethoprop 0.2 mg/kg Fensitrothion 0.2 mg/kg Fensitrothion 0.2 mg/kg Disalforo 0.2 mg/kg Distervos 0.2 mg/kg Dimethoate 0.2 mg/kg Ethion 0.2		< 0.05	< 0.5
Dibutylchlorendate (surr.) 1 % Tetrachloro-m-xylene (surr.) 1 % Organophosphorus Pesticides 0.2 mg/kg Azinphos-methyl 0.2 mg/kg Bolstar 0.2 mg/kg Chlorpenvinphos 0.2 mg/kg Chlorpyrifos 0.2 mg/kg Chlorpyrifos-methyl 0.2 mg/kg Coumaphos 2 mg/kg Demeton-S 0.2 mg/kg Diazinon 0.2 mg/kg Dikolforovos 0.2 mg/kg Disulfoton 0.2 mg/kg Disulfoton 0.2 mg/kg Ethion 0.2 mg/kg Ethyl parathion 0.2 mg/kg Fenitrothion 0.2 mg/kg Fenitrothion 0.2 mg/kg Malathion 0.2 mg/kg Malathion 0.2 mg/kg Merphos 0.2 mg/kg Methyl parathion 0.2 mg/k		< 0.1	< 1
Tetrachloro-m-xylene (surr.)1%Organophosphorus PesticidesAzinphos-methyl0.2mg/kgBolstar0.2mg/kgChlorfenvinphos0.2mg/kgChlorpyrifos0.2mg/kgChlorpyrifos-methyl0.2mg/kgCoumaphos2mg/kgDemeton-S0.2mg/kgDiazinon0.2mg/kgDichlorvos0.2mg/kgDisulfoton0.2mg/kgEthorpop0.2mg/kgEthorop0.2mg/kgEthorop0.2mg/kgEthorop0.2mg/kgEthorop0.2mg/kgEthorop0.2mg/kgEthorop0.2mg/kgMalathion0.2mg/kgMalathion0.2mg/kgMalathion0.2mg/kgMalathion0.2mg/kgMalathion0.2mg/kgMalathion0.2mg/kgMonocrotophos2mg/kgMonocrotophos2mg/kgPhorate0.2mg/kg		< 0.1	< 1
Organophosphorus PesticidesAzinphos-methyl0.2mg/kgBolstar0.2mg/kgChlorfervinphos0.2mg/kgChlorpyrifos0.2mg/kgChlorpyrifos-methyl0.2mg/kgCoumaphos2mg/kgDemeton-S0.2mg/kgDiazinon0.2mg/kgDichlorvos0.2mg/kgDisulfoton0.2mg/kgEPN0.2mg/kgEthorop0.2mg/kgEthorop0.2mg/kgEthion0.2mg/kgEthorop0.2mg/kgEthorop0.2mg/kgEthorop0.2mg/kgEthorop0.2mg/kgEthorop0.2mg/kgEthorop0.2mg/kgMalathion0.2mg/kgMalathion0.2mg/kgMalathion0.2mg/kgMethyl parathion0.2mg/kgMethyl parathion0.2mg/kgMalathion0.2mg/kgMethyl parathion0.2mg/kgMethyl parathion0.2mg/kgMethyl parathion0.2mg/kgMonocrotophos2mg/kgMonocrotophos2mg/kgMonocrotophos2mg/kgPhorate0.2mg/kg		83	89
Azinphos-methyl 0.2 mg/kg Bolstar 0.2 mg/kg Chlorfenvinphos 0.2 mg/kg Chlorpyrifos 0.2 mg/kg Chlorpyrifos-methyl 0.2 mg/kg Coumaphos 2 mg/kg Demeton-S 0.2 mg/kg Demeton-O 0.2 mg/kg Diazinon 0.2 mg/kg Dichlorvos 0.2 mg/kg Disulfoton 0.2 mg/kg Ethion 0.2 mg/kg Ethorop 0.2 mg/kg Ethorop 0.2 mg/kg Ethorop 0.2 mg/kg Ethorop 0.2 mg/kg Fensulfothion 0.2 mg/kg Fensulfothion 0.2 mg/kg Matathion 0.2 mg/kg Methyl parathion 0.2 mg/kg Methyl parathion 0.2 mg/kg Methyl parathion 0.2 mg/kg Met		117	93
Bolstar 0.2 mg/kg Chlorfenvinphos 0.2 mg/kg Chlorpyrifos 0.2 mg/kg Chlorpyrifos-methyl 0.2 mg/kg Coumaphos 2 mg/kg Demeton-S 0.2 mg/kg Demeton-O 0.2 mg/kg Diazinon 0.2 mg/kg Dichlorvos 0.2 mg/kg Dimethoate 0.2 mg/kg Disulfoton 0.2 mg/kg Ethion 0.2 mg/kg Ethoprop 0.2 mg/kg Ethyl parathion 0.2 mg/kg Fensulfothion 0.2 mg/kg Fensulfothion 0.2 mg/kg Malathion 0.2 mg/kg Methyl parathion 0.2 mg/kg Methyl parathion 0.2 mg/kg Malathion 0.2 mg/kg Methyl parathion 0.2 mg/kg Methyl parathion 0.2 mg/kg			
Chlorfenvinphos 0.2 mg/kg Chlorpyrifos 0.2 mg/kg Chlorpyrifos-methyl 0.2 mg/kg Coumaphos 2 mg/kg Demeton-S 0.2 mg/kg Demeton-O 0.2 mg/kg Diazinon 0.2 mg/kg Dichlorvos 0.2 mg/kg Dimethoate 0.2 mg/kg Disulfoton 0.2 mg/kg EPN 0.2 mg/kg Ethion 0.2 mg/kg Ethoprop 0.2 mg/kg Ethyl parathion 0.2 mg/kg Fensulfothion 0.2 mg/kg Fensulfothion 0.2 mg/kg Malathion 0.2 mg/kg Methyl parathion 0.2 mg/kg Methyl parathion 0.2 mg/kg Malathion 0.2 mg/kg Methyl parathion 0.2 mg/kg Methyl parathion 0.2 mg/kg		< 0.2	< 0.5
Chlorpyrifos 0.2 mg/kg Chlorpyrifos-methyl 0.2 mg/kg Coumaphos 2 mg/kg Demeton-S 0.2 mg/kg Demeton-O 0.2 mg/kg Diazinon 0.2 mg/kg Dichlorvos 0.2 mg/kg Dimethoate 0.2 mg/kg Disulfoton 0.2 mg/kg EFN 0.2 mg/kg Ethion 0.2 mg/kg Ethoprop 0.2 mg/kg Ethyl parathion 0.2 mg/kg Fensulfothion 0.2 mg/kg Fentinon 0.2 mg/kg Malathion 0.2 mg/kg Methyl parathion 0.2 mg/kg Methyl parathion 0.2 mg/kg Malathion 0.2 mg/kg Methyl parathion 0.2 mg/kg Methyl parathion 0.2 mg/kg Methyl parathion 0.2 mg/kg		< 0.2	< 0.5
Display 0.2 mg/kg Coumaphos 2 mg/kg Demeton-S 0.2 mg/kg Demeton-O 0.2 mg/kg Diazinon 0.2 mg/kg Disulfoton 0.2 mg/kg Ethion 0.2 mg/kg Ethoprop 0.2 mg/kg Fensulfothion 0.2 mg/kg Fenthion 0.2 mg/kg Malathion 0.2 mg/kg Methyl parathion 0.2 mg/kg Methyl parathion 0.2		< 0.2	< 0.5
Coumaphos2mg/kgDemeton-S0.2mg/kgDemeton-O0.2mg/kgDiazinon0.2mg/kgDichlorvos0.2mg/kgDimethoate0.2mg/kgDisulfoton0.2mg/kgEthion0.2mg/kgEthoprop0.2mg/kgEthyl parathion0.2mg/kgFensulfothion0.2mg/kgFentinon0.2mg/kgMalathion0.2mg/kgMalathion0.2mg/kgMerphos0.2mg/kgMethyl parathion0.2mg/kgMalathion0.2mg/kgMethyl parathion0.2mg/kgMethyl parathion0.2mg/kgMethyl parathion0.2mg/kgMethyl parathion0.2mg/kgMethyl parathion0.2mg/kgMethyl parathion0.2mg/kgMonocrotophos2mg/kgNaled0.2mg/kgPhorate0.2mg/kg		< 0.2	< 0.5
Demeton-S0.2mg/kgDemeton-O0.2mg/kgDiazinon0.2mg/kgDiazinon0.2mg/kgDichlorvos0.2mg/kgDimethoate0.2mg/kgDisulfoton0.2mg/kgEthion0.2mg/kgEthoprop0.2mg/kgEthyl parathion0.2mg/kgFenitrothion0.2mg/kgFensulfothion0.2mg/kgFensulfothion0.2mg/kgMalathion0.2mg/kgMerphos0.2mg/kgMethyl parathion0.2mg/kgMonocrotophos0.2mg/kgMonocrotophos2mg/kgPhorate0.2mg/kg		< 0.2	< 0.5
Demeton-O0.2mg/kgDiazinon0.2mg/kgDichlorvos0.2mg/kgDimethoate0.2mg/kgDisulfoton0.2mg/kgEPN0.2mg/kgEthion0.2mg/kgEthoprop0.2mg/kgEthyl parathion0.2mg/kgFenitrothion0.2mg/kgFenthion0.2mg/kgFenthion0.2mg/kgMalathion0.2mg/kgMethyl parathion0.2mg/kgMalathion0.2mg/kgMethyl parathion0.2mg/kgMethyl parathion0.2mg/kgMethyl parathion0.2mg/kgMethyl parathion0.2mg/kgMethyl parathion0.2mg/kgMethyl parathion0.2mg/kgMonocrotophos2mg/kgNaled0.2mg/kgPhorate0.2mg/kg		< 2	< 5
Diazinon0.2mg/kgDichlorvos0.2mg/kgDimethoate0.2mg/kgDisulfoton0.2mg/kgEPN0.2mg/kgEthion0.2mg/kgEthoprop0.2mg/kgEthyl parathion0.2mg/kgFenitrothion0.2mg/kgFensulfothion0.2mg/kgFenthion0.2mg/kgMalathion0.2mg/kgMerphos0.2mg/kgMethyl parathion0.2mg/kgMethyl parathion0.2mg/kgMethyl parathion0.2mg/kgMethyl parathion0.2mg/kgMethyl parathion0.2mg/kgMethyl parathion0.2mg/kgMonocrotophos2mg/kgNaled0.2mg/kgOmethoate2mg/kgPhorate0.2mg/kg		< 0.2	< 0.5
Dichlorvos0.2mg/kgDimethoate0.2mg/kgDisulfoton0.2mg/kgEPN0.2mg/kgEthion0.2mg/kgEthoprop0.2mg/kgEthyl parathion0.2mg/kgFensulfothion0.2mg/kgFensulfothion0.2mg/kgFenthion0.2mg/kgMalathion0.2mg/kgMerphos0.2mg/kgMethyl parathion0.2mg/kgMethyl parathion0.2mg/kgMethyl parathion0.2mg/kgMethyl parathion0.2mg/kgMethyl parathion0.2mg/kgMonocrotophos2mg/kgNaled0.2mg/kgOmethoate2mg/kgPhorate0.2mg/kg		< 0.2	< 0.5
Dimethoate0.2mg/kgDisulfoton0.2mg/kgEPN0.2mg/kgEthion0.2mg/kgEthoprop0.2mg/kgEthyl parathion0.2mg/kgFenitrothion0.2mg/kgFensulfothion0.2mg/kgFenthion0.2mg/kgMalathion0.2mg/kgMerphos0.2mg/kgMethyl parathion0.2mg/kgMonocrotophos2mg/kgMonocrotophos2mg/kgNaled0.2mg/kgPhorate0.2mg/kg		< 0.2	< 0.5
Disulfoton0.2mg/kgEPN0.2mg/kgEthion0.2mg/kgEthoprop0.2mg/kgEthyl parathion0.2mg/kgFenitrothion0.2mg/kgFensulfothion0.2mg/kgFenthion0.2mg/kgMalathion0.2mg/kgMerphos0.2mg/kgMethyl parathion0.2mg/kgMonocrotophos0.2mg/kgMonocrotophos2mg/kgNaled0.2mg/kgPhorate0.2mg/kg		< 0.2	< 0.5
EPN0.2mg/kgEthion0.2mg/kgEthion0.2mg/kgEthoprop0.2mg/kgEthyl parathion0.2mg/kgFenitrothion0.2mg/kgFensulfothion0.2mg/kgFenthion0.2mg/kgMalathion0.2mg/kgMerphos0.2mg/kgMethyl parathion0.2mg/kgMonocrotophos2mg/kgMaled0.2mg/kgNaled0.2mg/kgPhorate0.2mg/kg		< 0.2	< 0.5
Ethion0.2mg/kgEthoprop0.2mg/kgEthyl parathion0.2mg/kgFenitrothion0.2mg/kgFensulfothion0.2mg/kgFenthion0.2mg/kgMalathion0.2mg/kgMerphos0.2mg/kgMethyl parathion0.2mg/kgMethyl parathion0.2mg/kgMonocrotophos2mg/kgMonocrotophos2mg/kgNaled0.2mg/kgPhorate0.2mg/kg		< 0.2	< 0.5
Ethoprop0.2mg/kgEthyl parathion0.2mg/kgFenitrothion0.2mg/kgFensulfothion0.2mg/kgFenthion0.2mg/kgMalathion0.2mg/kgMerphos0.2mg/kgMethyl parathion0.2mg/kgMevinphos0.2mg/kgMonocrotophos2mg/kgNaled0.2mg/kgOmethoate2mg/kg		< 0.2	< 0.5
Ethyl parathion0.2mg/kgFenitrothion0.2mg/kgFensulfothion0.2mg/kgFenthion0.2mg/kgMalathion0.2mg/kgMerphos0.2mg/kgMethyl parathion0.2mg/kgMonocrotophos0.2mg/kgNaled0.2mg/kgOmethoate2mg/kg		< 0.2	< 0.5
Fenitrothion0.2mg/kgFensulfothion0.2mg/kgFensulfothion0.2mg/kgFenthion0.2mg/kgMalathion0.2mg/kgMerphos0.2mg/kgMethyl parathion0.2mg/kgMonocrotophos0.2mg/kgNaled0.2mg/kgOmethoate2mg/kg		< 0.2	< 0.5
Fensulfothion0.2mg/kgFenthion0.2mg/kgMalathion0.2mg/kgMerphos0.2mg/kgMethyl parathion0.2mg/kgMevinphos0.2mg/kgMonocrotophos2mg/kgNaled0.2mg/kgOmethoate2mg/kgPhorate0.2mg/kg		< 0.2	< 0.5
Fenthion0.2mg/kgMalathion0.2mg/kgMerphos0.2mg/kgMethyl parathion0.2mg/kgMevinphos0.2mg/kgMonocrotophos2mg/kgNaled0.2mg/kgOmethoate2mg/kgPhorate0.2mg/kg	· -	< 0.2	< 0.5
Malathion0.2mg/kgMalathion0.2mg/kgMerphos0.2mg/kgMethyl parathion0.2mg/kgMevinphos0.2mg/kgMonocrotophos2mg/kgNaled0.2mg/kgOmethoate2mg/kgPhorate0.2mg/kg		< 0.2	< 0.5
Merphos0.2mg/kgMethyl parathion0.2mg/kgMevinphos0.2mg/kgMonocrotophos2mg/kgNaled0.2mg/kgOmethoate2mg/kgPhorate0.2mg/kg		< 0.2	< 0.5
Methyl parathion0.2mg/kgMevinphos0.2mg/kgMonocrotophos2mg/kgNaled0.2mg/kgOmethoate2mg/kgPhorate0.2mg/kg	· -	< 0.2	< 0.5
Mevinphos0.2mg/kgMonocrotophos2mg/kgNaled0.2mg/kgOmethoate2mg/kgPhorate0.2mg/kg		< 0.2	< 0.5
Monocrotophos2mg/kgNaled0.2mg/kgOmethoate2mg/kgPhorate0.2mg/kg		< 0.2	< 0.5
Naled 0.2 mg/kg Omethoate 2 mg/kg Phorate 0.2 mg/kg	· -	< 0.2	< 0.5
Omethoate 2 mg/kg Phorate 0.2 mg/kg	· -	< 2	< 5
Phorate 0.2 mg/kg	· -	< 0.2	< 0.5
	· -	< 2	< 5
Pirimiphos-methyl 0.2 mg/kg		< 0.2	< 0.5
	· -	< 0.2	< 0.5
	· -	< 0.2	< 0.5
	· -	< 0.2	< 0.5
	· -	< 0.2	< 0.5
	· -	< 0.2	< 0.5
	· -	< 0.2	< 0.5
	· -	< 0.2	< 0.5
	· -	95	78
BTEX		+	
	· -	-	< 0.1
	· -	-	< 0.1
		-	< 0.1
m&p-Xylenes 0.2 mg/kg o-Xylene 0.1 mg/kg		-	< 0.2

Client Sample ID			D-9	DI-10-1	DI-10-2	^{G01} DI-11-1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S22-Fe03217	S22-Fe03218	S22-Fe03219	S22-Fe03220
Date Sampled			Feb 01, 2022	Feb 01, 2022	Feb 01, 2022	Feb 01, 2022
Test/Reference	LOR	Unit				
BTEX						
Xylenes - Total*	0.3	mg/kg	-	-	-	< 0.3
4-Bromofluorobenzene (surr.)	1	%	-	-	-	120

Client Sample ID			^{G01} DI-11-2	DI-12-1	DI-13-1	D-6
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S22-Fe03221	S22-Fe03222	S22-Fe03223	S22-Fe03229
Date Sampled			Feb 01, 2022	Feb 01, 2022	Feb 01, 2022	Feb 01, 2022
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons	LOIN	Onit				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	_
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	-
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
2-Fluorobiphenyl (surr.)	1	%	91	94	112	-
p-Terphenyl-d14 (surr.)	1	%	75	89	107	-
Heavy Metals						
Arsenic	2	mg/kg	12	4.4	4.1	4.2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	1.6	< 0.4
Chromium	5	mg/kg	200	150	150	78
Copper	5	mg/kg	82	31	30	21
Lead	5	mg/kg	33	45	67	11
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	130	94	110	38
Zinc	5	mg/kg	750	170	1200	21
		1				
% Moisture	1	%	34	10.0	5.0	15
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	-
TRH C10-C14	20	mg/kg	110	< 20	< 20	-
TRH C15-C28	50	mg/kg	870	130	140	-
TRH C29-C36	50	mg/kg	680	130	120	-
TRH C10-C36 (Total)	50	mg/kg	1660	260	260	-

Client Sample ID			^{G01} DI-11-2	DI-12-1	DI-13-1	D-6
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S22-Fe03221	S22-Fe03222	S22-Fe03223	S22-Fe03229
Date Sampled			Feb 01, 2022	Feb 01, 2022	Feb 01, 2022	Feb 01, 2022
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons	L					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	_
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	-
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	-
TRH >C10-C16	50	mg/kg	120	< 50	< 50	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	120	< 50	< 50	-
TRH >C16-C34	100	mg/kg	1400	220	220	-
TRH >C34-C40	100	mg/kg	340	< 100	< 100	-
TRH >C10-C40 (total)*	100	mg/kg	1860	220	220	-
Organochlorine Pesticides	•					
Chlordanes - Total	0.1	mg/kg	< 1	< 0.1	< 0.1	-
4.4'-DDD	0.05	mg/kg	< 0.5	< 0.05	< 0.05	-
4.4'-DDE	0.05	mg/kg	< 0.5	< 0.05	< 0.05	-
4.4'-DDT	0.05	mg/kg	< 0.5	< 0.05	< 0.05	-
a-HCH	0.05	mg/kg	< 0.5	< 0.05	< 0.05	-
Aldrin	0.05	mg/kg	< 0.5	< 0.05	< 0.05	-
b-HCH	0.05	mg/kg	< 0.5	< 0.05	< 0.05	-
d-HCH	0.05	mg/kg	< 0.5	< 0.05	< 0.05	-
Dieldrin	0.05	mg/kg	< 0.5	< 0.05	< 0.05	-
Endosulfan I	0.05	mg/kg	< 0.5	< 0.05	< 0.05	-
Endosulfan II	0.05	mg/kg	< 0.5	< 0.05	< 0.05	-
Endosulfan sulphate	0.05	mg/kg	< 0.5	< 0.05	< 0.05	-
Endrin	0.05	mg/kg	< 0.5	< 0.05	< 0.05	-
Endrin aldehyde	0.05	mg/kg	< 0.5	< 0.05	< 0.05	-
Endrin ketone	0.05	mg/kg	< 0.5	< 0.05	< 0.05	-
g-HCH (Lindane)	0.05	mg/kg	< 0.5	< 0.05	< 0.05	-
Heptachlor	0.05	mg/kg	< 0.5	< 0.05	< 0.05	-
Heptachlor epoxide	0.05	mg/kg	< 0.5	< 0.05	< 0.05	-
Hexachlorobenzene	0.05	mg/kg	< 0.5	< 0.05	< 0.05	-
Methoxychlor	0.05	mg/kg	< 0.5	< 0.05	< 0.05	-
Toxaphene	0.5	mg/kg	< 10	< 0.5	< 0.5	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.5	< 0.05	< 0.05	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.5	< 0.05	< 0.05	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 1	< 0.1	< 0.1	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 1	< 0.1	< 0.1	-
Dibutylchlorendate (surr.)	1	%	76	98	127	-
Tetrachloro-m-xylene (surr.)	1	%	91	96	117	-
Organophosphorus Pesticides						
Azinphos-methyl	0.2	mg/kg	< 0.5	< 0.2	< 0.2	-
Bolstar	0.2	mg/kg	< 0.5	< 0.2	< 0.2	-
Chlorfenvinphos	0.2	mg/kg	< 0.5	< 0.2	< 0.2	-
Chlorpyrifos	0.2	mg/kg	< 0.5	< 0.2	< 0.2	-
Chlorpyrifos-methyl	0.2	mg/kg	< 0.5	< 0.2	< 0.2	-
Coumaphos	2	mg/kg	< 5	< 2	< 2	-
Demeton-S	0.2	mg/kg	< 0.5	< 0.2	< 0.2	-
Demeton-O	0.2	mg/kg	< 0.5	< 0.2	< 0.2	-
Diazinon	0.2	mg/kg	< 0.5	< 0.2	< 0.2	-
Dichlorvos	0.2	mg/kg	< 0.5	< 0.2	< 0.2	-
Dimethoate	0.2	mg/kg	< 0.5	< 0.2	< 0.2	-
Disulfoton	0.2	mg/kg	< 0.5	< 0.2	< 0.2	-

Client Sample ID			^{G01} DI-11-2	DI-12-1	DI-13-1	D-6
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S22-Fe03221	S22-Fe03222	S22-Fe03223	S22-Fe03229
Date Sampled			Feb 01, 2022	Feb 01, 2022	Feb 01, 2022	Feb 01, 2022
Test/Reference	LOR	Unit				
Organophosphorus Pesticides	·					
EPN	0.2	mg/kg	< 0.5	< 0.2	< 0.2	-
Ethion	0.2	mg/kg	< 0.5	< 0.2	< 0.2	-
Ethoprop	0.2	mg/kg	< 0.5	< 0.2	< 0.2	-
Ethyl parathion	0.2	mg/kg	< 0.5	< 0.2	< 0.2	-
Fenitrothion	0.2	mg/kg	< 0.5	< 0.2	< 0.2	-
Fensulfothion	0.2	mg/kg	< 0.5	< 0.2	< 0.2	-
Fenthion	0.2	mg/kg	< 0.5	< 0.2	< 0.2	-
Malathion	0.2	mg/kg	< 0.5	< 0.2	< 0.2	-
Merphos	0.2	mg/kg	< 0.5	< 0.2	< 0.2	-
Methyl parathion	0.2	mg/kg	< 0.5	< 0.2	< 0.2	-
Mevinphos	0.2	mg/kg	< 0.5	< 0.2	< 0.2	-
Monocrotophos	2	mg/kg	< 5	< 2	< 2	-
Naled	0.2	mg/kg	< 0.5	< 0.2	< 0.2	-
Omethoate	2	mg/kg	< 5	< 2	< 2	-
Phorate	0.2	mg/kg	< 0.5	< 0.2	< 0.2	-
Pirimiphos-methyl	0.2	mg/kg	< 0.5	< 0.2	< 0.2	-
Pyrazophos	0.2	mg/kg	< 0.5	< 0.2	< 0.2	-
Ronnel	0.2	mg/kg	< 0.5	< 0.2	< 0.2	-
Terbufos	0.2	mg/kg	< 0.5	< 0.2	< 0.2	-
Tetrachlorvinphos	0.2	mg/kg	< 0.5	< 0.2	< 0.2	-
Tokuthion	0.2	mg/kg	< 0.5	< 0.2	< 0.2	-
Trichloronate	0.2	mg/kg	< 0.5	< 0.2	< 0.2	-
Triphenylphosphate (surr.)	1	%	77	89	107	-
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	-
4-Bromofluorobenzene (surr.)	1	%	110	118	107	-

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Polycyclic Aromatic Hydrocarbons	Sydney	Feb 07, 2022	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Metals M8	Sydney	Feb 07, 2022	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Feb 07, 2022	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Feb 07, 2022	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Feb 07, 2022	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Organochlorine Pesticides	Sydney	Feb 07, 2022	14 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Organophosphorus Pesticides	Sydney	Feb 07, 2022	14 Days
- Method: LTM-ORG-2200 Organophosphorus Pesticides by GC-MS			
BTEX	Sydney	Feb 07, 2022	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
% Moisture	Sydney	Feb 03, 2022	14 Days
- Method: LTM-GEN-7080 Moisture			

	eurofi	ns			Eurofins Environme ABN: 50 005 085 521	ent Te	sting /	Austra	lia Pty	Ltd						Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environmen NZBN: 9429046024954	t Testing NZ Limited
web: w	ww.eurofins.com.au	Envi	ronment	Testing	Melbourne 6 Monterey Road Dandenong South VIC 3 Phone : +61 3 8564 500 NATA # 1261 Site # 125	U 8175 1 0 L 64 P		Road /e West -61 2 99	NSW 2	1/ M 066 PI 0 N	urarrie hone : -	allwood QLD 4 ⁷ +61 7 39		4 N) F 94 F	Vewcastle 1/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 6253 4444 NATA # 2377 Site # 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7674 Phone : 0800 856 450 IANZ # 1290
	mpany Name: dress:	Geotesta Pty Unit 6, 20/22 Seven Hills NSW 2147	```	ad			R	rder N eport hone: ax:	#:		36003 3008	3 352 21	6			Received: Due: Priority: Contact Name:	Feb 1, 2022 4:33 F Feb 8, 2022 5 Day - Mohammad Hoss	
	oject Name: oject ID:	13 L NARRC NE1167	MINE RD DU	JBBO												Eurofins Analytica	I Services Manager	Asim Khan
		Sa	mple Detail			Asbestos - AS4964	HOLD	Polycyclic Aromatic Hydrocarbons	Metals M8	BTEX	Suite B14: OCP/OPP	Moisture Set	Total Recoverable Hydrocarbons	Eurofins Suite B10				
	ourne Laborato			54											_			
	ey Laboratory					X	X	Х	Х	Х	Х	X	X	Х	4			
	bane Laborator														4			
	ield Laboratory			9											-			
	h Laboratory - N		e # 2370												-			
No	rnal Laboratory Sample ID	Sample Date	Sampling	Matrix	LAB ID				-						-			
110	Cample ID		Time	Matrix														
1	DI-1-1	Feb 01, 2022		Soil	S22-Fe03201	<u> </u>	1	Х	Х			X			4			
2	DI-2-1	Feb 01, 2022		Soil	S22-Fe03202	-			X	<u> </u>		X	Х		4			
3	DI-2-3	Feb 01, 2022		Soil	S22-Fe03203	-		Х	X			X			4			
4	DI-3	Feb 01, 2022		Soil	S22-Fe03204			×	X			X	Х		4			
5	DI-3-2	Feb 01, 2022		Soil	S22-Fe03205	<u> </u>		Х	X	<u> </u>		X			-			
6 7	DI-3-3	Feb 01, 2022		Soil	S22-Fe03206				X		x	X	Х		-			
7	DI-4	Feb 01, 2022		Soil	S22-Fe03207				X		X	X						
8	DI-4-3	Feb 01, 2022		Soil	S22-Fe03208			Х	X	~		X						
9	DI-5	Feb 01, 2022		Soil	S22-Fe03209				Х	Х		Х						

🛟 eurofi	ns		Eurofins Environme ABN: 50 005 085 521	ent Te	sting A	ustra	lia Pty	Ltd						Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environmen NZBN: 9429046024954	t Testing NZ Limited
web: www.eurofins.com.au email: EnviroSales@eurofins	Envir	ronment Testing	Melbourne 6 Monterey Road Dandenong South VIC 3 Phone : +61 3 8564 500 NATA # 1261 Site # 125	U 175 1 0 L 4 P	Sydney Jnit F3, E 6 Mars I ane Cov Phone : + IATA # 1	Road ve West •61 2 99	: NSW 2 900 840	1/ M 066 PI 0 N	lurarrie hone : -	allwood QLD 4' +61 7 39		4 N F 94 F	Vewcastle V/52 Industrial Drive Agyfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 VATA # 1261 Site # 25079	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 6253 4444 NATA # 2377 Site # 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290
Company Name: Address:	Geotesta Pty Unit 6, 20/22 Seven Hills NSW 2147	Ltd (NSW) Foundry Road			Re	rder N eport none: ax:	#:		36003 13008	3 52 21	6			Received: Due: Priority: Contact Name:	Feb 1, 2022 4:33 F Feb 8, 2022 5 Day - Mohammad Hoss	
Project Name: Project ID:	13 L NARRON NE1167	MINE RD DUBBO												Eurofins Analytica	I Services Manager	: Asim Khan
	San	nple Detail		Asbestos - AS4964	HOLD	Polycyclic Aromatic Hydrocarbons	Metals M8	BTEX	Suite B14: OCP/OPP	Moisture Set	Total Recoverable Hydrocarbons	Eurofins Suite B10				
Melbourne Laborato	ory - NATA # 126	1 Site # 1254														
Sydney Laboratory	- NATA # 1261 S	ite # 18217		Х	X	Х	Х	Х	Х	X	Х	Х				
Brisbane Laboratory	/ - NATA # 1261	Site # 20794								ļ			_			
Mayfield Laboratory													4			
Perth Laboratory - N		e # 2370											4			
External Laboratory													4			
10 DI-5-1	Feb 01, 2022	Soil	S22-Fe03210				X			X	X		4			
11 DI-6	Feb 01, 2022	Soil	S22-Fe03211				X		X	X	Х		4			
12 D-6-2	Feb 01, 2022	Soil	S22-Fe03212				X		X	X		Х	-			
13 DI-7-1 14 DI-7-2	Feb 01, 2022	Soil	S22-Fe03213				x		x	X X		X	-			
14 DI-7-2 15 DI-8-1	Feb 01, 2022 Feb 01, 2022	Soil Soil	S22-Fe03214				X		^	X	х		-			
16 DI-9	Feb 01, 2022 Feb 01, 2022	Soil	S22-Fe03215 S22-Fe03216				<u> </u>			X		Х	-			
17 D-9		Soil					x	<u> </u>		X		^	4			
17 D-9 18 DI-10-1	Feb 01, 2022 Feb 01, 2022	Soil	S22-Fe03217 S22-Fe03218				X			X	х		-			
19 DI-10-1	Feb 01, 2022 Feb 01, 2022	Soil	S22-Fe03218 S22-Fe03219				X		X	X			-			
							<u> </u>		<u> </u>	X		х	-			
20 DI-11-1	Feb 01, 2022	Soil	S22-Fe03220				1			X		X				

🔅 eurofir			Eurofins Environme ABN: 50 005 085 521	nt Te	sting A	ustra	lia Pty	Ltd						Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environmen NZBN: 9429046024954	t Testing NZ Limited
web: www.eurofins.com.au email: EnviroSales@eurofins.c	Environment	t Testing	Melbourne 6 Monterey Road Dandenong South VIC 3 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254	U 175 1() La 4 P		Road ve West •61 2 99	NSW 2	1/: M 066 Pł 0 N/	lurarrie hone : +	allwood QLD 41 +61 7 39		4 N) F 94 F	Newcastle 1/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 6253 4444 NATA # 2377 Site # 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290
Company Name: Address:	Geotesta Pty Ltd (NSW) Unit 6, 20/22 Foundry Ro Seven Hills NSW 2147	bad			Re	rder N eport none: nx:	#:		36003 13008	3 52 21	6			Received: Due: Priority: Contact Name:	Feb 1, 2022 4:33 F Feb 8, 2022 5 Day - Mohammad Hoss	
Project Name: Project ID:	13 L NARROMINE RD D NE1167	UBBO												Eurofins Analytica	I Services Manager :	Asim Khan
	Sample Detail			Asbestos - AS4964	HOLD	Polycyclic Aromatic Hydrocarbons	Metals M8	BTEX	Suite B14: OCP/OPP	Moisture Set	Total Recoverable Hydrocarbons	Eurofins Suite B10				
Melbourne Laborator	ry - NATA # 1261 Site # 12	54														
Sydney Laboratory -	NATA # 1261 Site # 18217	7		х	Х	х	Х	х	Х	Х	х	Х				
Brisbane Laboratory	- NATA # 1261 Site # 2079	94														
Mayfield Laboratory	- NATA # 1261 Site # 2507	'9														
Perth Laboratory - N	ATA # 2377 Site # 2370															
External Laboratory																
21 DI-11-2	Feb 01, 2022	Soil	S22-Fe03221							х		Х	4			
	Feb 01, 2022	Soil	S22-Fe03222							X		Х				
	Feb 01, 2022	Soil	S22-Fe03223							X		Х	4			
	Feb 01, 2022	Soil	S22-Fe03224	Х						-			4			
	Feb 01, 2022	Soil	S22-Fe03225	Х						<u> </u>			4			
	Feb 01, 2022	Soil	S22-Fe03226	Х						<u> </u>			4			
	Feb 01, 2022	Soil	S22-Fe03227	Х									4			
	Feb 01, 2022	Soil	S22-Fe03228	Х									4			
	Feb 01, 2022	Soil	S22-Fe03229				X			X			4			
	Feb 01, 2022	Soil	S22-Fe03230		X								4			
Test Counts				5	1	4	18	1	5	24	7	6				

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

Unito			
mg/kg: milligrams per kil	ogram	mg/L: milligrams per litre	μg/L: micrograms per litre
ppm: parts per million		ppb: parts per billion	%: Percentage
org/100 mL: Organisms	per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100 mL: Most Probable Number of organisms per 100 millilitres

Terms

APHA	American Public Health Association
COC	Chain of Custody
СР	Client Parent - QC was performed on samples pertaining to this report
CRM	Certified Reference Material (ISO17034) - reported as percent recovery.
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
LOR	Limit of Reporting.
LCS	Laboratory Control Sample - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
SRA	Sample Receipt Advice
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
твто	Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.
TCLP	Toxicity Characteristic Leaching Procedure
TEQ	Toxic Equivalency Quotient or Total Equivalence
QSM	US Department of Defense Quality Systems Manual Version 5.4
US EPA	United States Environmental Protection Agency
WA DWER	Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank						
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	mg/kg	< 0.5		0.5	Pass	
Acenaphthylene	mg/kg	< 0.5		0.5	Pass	
Anthracene	mg/kg	< 0.5		0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5		0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5		0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5		0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Chrysene	mg/kg	< 0.5		0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5		0.5	Pass	
Fluoranthene	mg/kg	< 0.5		0.5	Pass	
Fluorene	mg/kg	< 0.5		0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5		0.5	Pass	
Naphthalene	mg/kg	< 0.5		0.5	Pass	
Phenanthrene	mg/kg	< 0.5		0.5	Pass	
Pyrene	mg/kg	< 0.5		0.5	Pass	
Method Blank						
Heavy Metals						
Arsenic	mg/kg	< 2		2	Pass	
Cadmium	mg/kg	< 0.4		0.4	Pass	
Chromium	mg/kg	< 5		5	Pass	
Copper	mg/kg	< 5		5	Pass	
Lead	mg/kg	< 5		5	Pass	
Mercury	mg/kg	< 0.1		0.1	Pass	
Nickel	mg/kg	< 5		5	Pass	
Zinc	mg/kg	< 5		5	Pass	
Method Blank	iiig/iig			<u> </u>	1 400	
Total Recoverable Hydrocarbons						
TRH C6-C9	mg/kg	< 20		20	Pass	
TRH C10-C14	mg/kg	< 20		20	Pass	
TRH C15-C28	mg/kg	< 50		50	Pass	
TRH C29-C36	mg/kg	< 50		50	Pass	
Naphthalene	mg/kg	< 0.5		0.5	Pass	
TRH C6-C10	mg/kg	< 20		20	Pass	
TRH >C10-C16	mg/kg	< 50		50	Pass	
TRH >C16-C34	mg/kg	< 100		100	Pass	
TRH >C34-C40	mg/kg	< 100		100	Pass	
Method Blank	iiig/itg	100		100	1 455	
Organochlorine Pesticides						
Chlordanes - Total	mg/kg	< 0.1		0.1	Pass	
4.4'-DDD	mg/kg	< 0.05		0.05	Pass	
4.4'-DDE	mg/kg	< 0.05		0.05	Pass	
4.4'-DDT	mg/kg	< 0.05		0.05	Pass	
a-HCH	mg/kg	< 0.05		0.05	Pass	
Aldrin	mg/kg	< 0.05		0.05	Pass	
b-HCH	mg/kg	< 0.05		0.05	Pass	
d-HCH	mg/kg	< 0.05		0.05	Pass	
Dieldrin	mg/kg	< 0.05		0.05	Pass	
Endosulfan I	mg/kg	< 0.05		0.05	Pass	
	iiig/ĸg	< 0.05		0.05	1 035	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-HCH (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.05	0.05	Pass	
Toxaphene	mg/kg	< 0.5	0.5	Pass	
Method Blank					
Organophosphorus Pesticides					
Azinphos-methyl	mg/kg	< 0.2	0.2	Pass	
Bolstar	mg/kg	< 0.2	0.2	Pass	
Chlorfenvinphos	mg/kg	< 0.2	0.2	Pass	
Chlorpyrifos	mg/kg	< 0.2	0.2	Pass	
Chlorpyrifos-methyl	mg/kg	mg/kg < 0.2 0.2 Pass mg/kg < 0.2			
Coumaphos	mg/kg	mg/kg < 0.2 0.2 Pass mg/kg < 0.2			
Demeton-S	mg/kg < 0.2 0.2 Pass mg/kg < 0.2				
Demeton-O		ng/kg < 0.2 0.2 Pass ng/kg < 0.2			
Diazinon	mg/kg			Pass	
Dichlorvos	mg/kg	< 0.2	0.2	Pass	
Dimethoate	mg/kg	< 0.2	0.2	Pass	
Disulfoton	mg/kg	< 0.2	0.2	Pass	
EPN	mg/kg	< 0.2	0.2	Pass	
Ethion	mg/kg	< 0.2	0.2	Pass	
Ethoprop	mg/kg	< 0.2	0.2	Pass	
Ethyl parathion	mg/kg	< 0.2	0.2	Pass	
Fenitrothion	mg/kg	< 0.2	0.2	Pass	
Fensulfothion	mg/kg	< 0.2	0.2	Pass	
Fenthion	mg/kg	< 0.2	0.2	Pass	
Malathion	mg/kg	< 0.2	0.2	Pass	
Merphos	mg/kg	< 0.2	0.2	Pass	
Methyl parathion	mg/kg	< 0.2	0.2	Pass	
Mevinphos	mg/kg	< 0.2	0.2	Pass	
Monocrotophos	mg/kg	< 2	2	Pass	
Naled	mg/kg	< 0.2	0.2	Pass	
Omethoate	mg/kg	< 2	2	Pass	
Phorate	mg/kg	< 0.2	0.2	Pass	
Pirimiphos-methyl	mg/kg	< 0.2	0.2	Pass	
Pyrazophos	mg/kg	< 0.2	0.2	Pass	
Ronnel	mg/kg	< 0.2	0.2	Pass	
Terbufos	mg/kg	< 0.2	0.2	Pass	
Tetrachlorvinphos	mg/kg	< 0.2	0.2	Pass	
Tokuthion	mg/kg	< 0.2	0.2	Pass	
Trichloronate	mg/kg	< 0.2	0.2	Pass	
Method Blank					
BTEX					
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xylenes - Total*	mg/kg	< 0.3	0.3	Pass	

Test	Units	Result 1	Δ	cceptance Limits	Pass Limits	Qualifying Code
LCS - % Recovery			· · · ·			
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	%	101		70-130	Pass	
Acenaphthylene	%	96		70-130	Pass	
Anthracene	%	97		70-130	Pass	
Benz(a)anthracene	%	96		70-130	Pass	
Benzo(a)pyrene	%	101		70-130	Pass	
Benzo(b&j)fluoranthene	%	110		70-130	Pass	
Benzo(g.h.i)perylene	%	106		70-130	Pass	
Benzo(k)fluoranthene	%	98		70-130	Pass	
Chrysene	%	79		70-130	Pass	
Dibenz(a.h)anthracene	%	107		70-130	Pass	
Fluoranthene	%	104		70-130	Pass	
Fluorene	%	117		70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	111		70-130	Pass	
Naphthalene	%	98		70-130	Pass	
Phenanthrene	%	104		70-130	Pass	
Pyrene	%	105		70-130	Pass	
LCS - % Recovery						
Heavy Metals						
Arsenic	%	114		80-120	Pass	
Cadmium	%	108		80-120	Pass	
Chromium	%	110		80-120	Pass	
Copper	%	106		80-120	Pass	
Lead	%	110		80-120	Pass	
Mercury	%	93		80-120	Pass	
Nickel	%	109		80-120	Pass	
Zinc	%	106		80-120	Pass	
LCS - % Recovery						
Total Recoverable Hydrocarbons						
TRH C6-C9	%	99		70-130	Pass	
TRH C10-C14	%	70		70-130	Pass	
Naphthalene	%	127		70-130	Pass	
TRH C6-C10	%	95		70-130	Pass	
TRH >C10-C16	%	70		70-130	Pass	
LCS - % Recovery						
Organochlorine Pesticides						
Chlordanes - Total	%	95		70-130	Pass	
4.4'-DDD	%	118		70-130	Pass	
4.4'-DDE	%	97		70-130	Pass	
4.4'-DDT	%	112		70-130	Pass	
a-HCH	%	98		70-130	Pass	
Aldrin	%	101		70-130	Pass	
b-HCH	%	111		70-130	Pass	
d-HCH	%	114		70-130	Pass	
Dieldrin	%	108		70-130	Pass	
Endosulfan I	%	122		70-130	Pass	
Endosulfan II	%	113		70-130	Pass	
Endosulfan sulphate	%	86		70-130	Pass	
Endrin	%	115		70-130	Pass	
Endrin aldehyde	%	80		70-130	Pass	
Endrin ketone	%	101		70-130	Pass	
g-HCH (Lindane)	%	115		70-130	Pass	
Heptachlor	%	124		70-130	Pass	

Test			Units	Result 1		ceptance Limits	Pass Limits	Qualifying Code
Heptachlor epoxide			%	118		70-130	Pass	
Hexachlorobenzene			%	102		70-130	Pass	
Methoxychlor			%	85		70-130	Pass	
LCS - % Recovery								
Organophosphorus Pesticides								
Diazinon			%	110		70-130	Pass	
Dimethoate			%	88		70-130	Pass	
Ethion			%	72		70-130	Pass	
Fenitrothion			%	75		70-130	Pass	
Methyl parathion			%	86		70-130	Pass	
Mevinphos			%	75		70-130	Pass	
LCS - % Recovery								
втех								
Benzene			%	108		70-130	Pass	
Toluene			%	101		70-130	Pass	
Ethylbenzene			%	96		70-130	Pass	
m&p-Xylenes			%	97		70-130	Pass	
o-Xylene			%	96		70-130	Pass	
Xylenes - Total*			%	96		70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1	Ac	ceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Polycyclic Aromatic Hydrocarbons	5			Result 1				
Benzo(g.h.i)perylene	S22-Fe07242	NCP	%	109		70-130	Pass	
Chrysene	S22-Fe07242	NCP	%	113		70-130	Pass	
Dibenz(a.h)anthracene	S22-Fe07242	NCP	%	117		70-130	Pass	
Spike - % Recovery								
Heavy Metals				Result 1				
Arsenic	S22-Fe03081	NCP	%	114		75-125	Pass	
Cadmium	S22-Fe03081	NCP	%	112		75-125	Pass	
Chromium	S22-Fe03524	NCP	%	91		75-125	Pass	
						75-125	Pass	
Copper	S22-Fe03081	NCP	%	114		10-120	1 835	
Copper Lead	S22-Fe03081 S22-Fe03081	NCP NCP	% %	114 111		75-125	Pass	
Lead	S22-Fe03081	NCP	%	111		75-125	Pass	
Lead Mercury	S22-Fe03081 S22-Fe03081	NCP NCP	% %	111 99		75-125 75-125	Pass Pass	
Lead Mercury Nickel	S22-Fe03081 S22-Fe03081 S22-Fe03524	NCP NCP NCP	% % %	111 99 91		75-125 75-125 75-125	Pass Pass Pass	
Lead Mercury Nickel Zinc	S22-Fe03081 S22-Fe03081 S22-Fe03524	NCP NCP NCP	% % %	111 99 91		75-125 75-125 75-125	Pass Pass Pass	
Lead Mercury Nickel Zinc Spike - % Recovery Organochlorine Pesticides Endrin	S22-Fe03081 S22-Fe03081 S22-Fe03524	NCP NCP NCP	% % %	111 99 91 95		75-125 75-125 75-125	Pass Pass Pass	
Lead Mercury Nickel Zinc Spike - % Recovery Organochlorine Pesticides Endrin Spike - % Recovery	S22-Fe03081 S22-Fe03081 S22-Fe03524 S22-Fe03081 S22-Fe03081	NCP NCP NCP NCP	% % %	111 99 91 95 Result 1 130		75-125 75-125 75-125 75-125	Pass Pass Pass Pass	
Lead Mercury Nickel Zinc Spike - % Recovery Organochlorine Pesticides Endrin Spike - % Recovery Polycyclic Aromatic Hydrocarbons	S22-Fe03081 S22-Fe03081 S22-Fe03524 S22-Fe03081 S22-Fe00015	NCP NCP NCP NCP	% % % %	111 99 91 95 Result 1 130 Result 1		75-125 75-125 75-125 75-125 75-125 70-130	Pass Pass Pass Pass Pass	
Lead Mercury Nickel Zinc Spike - % Recovery Organochlorine Pesticides Endrin Spike - % Recovery	S22-Fe03081 S22-Fe03081 S22-Fe03524 S22-Fe03081 S22-Fe03081	NCP NCP NCP NCP NCP	% % % %	111 99 91 95 Result 1 130		75-125 75-125 75-125 75-125	Pass Pass Pass Pass	
Lead Mercury Nickel Zinc Spike - % Recovery Organochlorine Pesticides Endrin Spike - % Recovery Polycyclic Aromatic Hydrocarbons	S22-Fe03081 S22-Fe03081 S22-Fe03524 S22-Fe03081 S22-Fe00015	NCP NCP NCP NCP NCP CP CP	% % % % %	111 99 91 95 Result 1 130 Result 1		75-125 75-125 75-125 75-125 75-125 70-130	Pass Pass Pass Pass Pass	
Lead Mercury Nickel Zinc Spike - % Recovery Organochlorine Pesticides Endrin Spike - % Recovery Polycyclic Aromatic Hydrocarbons Acenaphthene	S22-Fe03081 S22-Fe03081 S22-Fe03524 S22-Fe03081 S22-Fe00015 S22-Fe00015 S22-Fe03213	NCP NCP NCP NCP NCP CP CP CP	% % % % % %	111 99 91 95 Result 1 130 Result 1 111		75-125 75-125 75-125 75-125 75-125 70-130 70-130	Pass Pass Pass Pass Pass Pass	
Lead Mercury Nickel Zinc Spike - % Recovery Organochlorine Pesticides Endrin Spike - % Recovery Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene	S22-Fe03081 S22-Fe03081 S22-Fe03524 S22-Fe03081 S22-Fe00015 S22-Fe00015 S22-Fe03213 S22-Fe03213	NCP NCP NCP NCP NCP CP CP CP CP	% % % % % % %	111 99 91 95 Result 1 130 Result 1 111 119		75-125 75-125 75-125 75-125 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass	
Lead Mercury Nickel Zinc Spike - % Recovery Organochlorine Pesticides Endrin Spike - % Recovery Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene	S22-Fe03081 S22-Fe03081 S22-Fe03524 S22-Fe03081 S22-Fe00015 S S22-Fe00213 S22-Fe03213 S22-Fe03213	NCP NCP NCP NCP NCP CP CP CP	% % % % % %	111 99 91 95 Result 1 130 Result 1 111 119 115		75-125 75-125 75-125 75-125 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Lead Mercury Nickel Zinc Spike - % Recovery Organochlorine Pesticides Endrin Spike - % Recovery Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene	S22-Fe03081 S22-Fe03081 S22-Fe03524 S22-Fe03081 S22-Fe03081 S22-Fe03015 S22-Fe03213 S22-Fe03213 S22-Fe03213 S22-Fe03213	NCP NCP NCP NCP NCP CP CP CP CP CP CP CP	% % % % % % % %	111 99 91 95 Result 1 130 Result 1 111 119 115 104		75-125 75-125 75-125 75-125 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Lead Mercury Nickel Zinc Spike - % Recovery Organochlorine Pesticides Endrin Spike - % Recovery Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene	S22-Fe03081 S22-Fe03081 S22-Fe03524 S22-Fe03081 S22-Fe03081 S22-Fe03015 S22-Fe03213 S22-Fe03213 S22-Fe03213 S22-Fe03213 S22-Fe03213	NCP NCP NCP NCP NCP CP CP CP CP CP CP CP CP	% % % % % % % %	111 99 91 95 Result 1 130 Result 1 111 119 115 104 118		75-125 75-125 75-125 75-125 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Lead Mercury Nickel Zinc Spike - % Recovery Organochlorine Pesticides Endrin Spike - % Recovery Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene	S22-Fe03081 S22-Fe03081 S22-Fe03524 S22-Fe03081 S22-Fe03081 S22-Fe03015 S22-Fe03213 S22-Fe03213 S22-Fe03213 S22-Fe03213 S22-Fe03213 S22-Fe03213	NCP NCP NCP NCP NCP CP CP CP CP CP CP CP	% % % % % % % %	111 99 91 95 Result 1 130 Result 1 111 119 115 104 118 102	Image: Constraint of the sector of	75-125 75-125 75-125 75-125 75-125 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Lead Mercury Nickel Zinc Spike - % Recovery Organochlorine Pesticides Endrin Spike - % Recovery Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(k)fluoranthene	S22-Fe03081 S22-Fe03081 S22-Fe03081 S22-Fe03081 S22-Fe03081 S22-Fe03015 S22-Fe03213 S22-Fe03213 S22-Fe03213 S22-Fe03213 S22-Fe03213 S22-Fe03213	NCP NCP NCP NCP NCP CP CP CP CP CP CP CP CP	% % % % % % % % %	111 99 91 95 Result 1 130 Result 1 111 119 115 104 118 102 119	Image: Constraint of the sector of	75-125 75-125 75-125 75-125 75-125 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Lead Mercury Nickel Zinc Spike - % Recovery Organochlorine Pesticides Endrin Spike - % Recovery Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Actenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(b&j)fluoranthene Fluoranthene	S22-Fe03081 S22-Fe03081 S22-Fe03081 S22-Fe03081 S22-Fe03081 S22-Fe03015 S22-Fe03213 S22-Fe03213 S22-Fe03213 S22-Fe03213 S22-Fe03213 S22-Fe03213 S22-Fe03213	NCP NCP NCP NCP NCP CP CP CP CP CP CP CP CP CP CP CP CP C	% % % % % % % % % %	111 99 91 95 Result 1 130 Result 1 111 119 115 104 118 102 119 109	Image: Constraint of the sector of	75-125 75-125 75-125 75-125 75-125 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Lead Mercury Nickel Zinc Spike - % Recovery Organochlorine Pesticides Endrin Spike - % Recovery Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Actenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(b&j)fluoranthene Fluoranthene Fluorene	S22-Fe03081 S22-Fe03081 S22-Fe03081 S22-Fe03081 S22-Fe03081 S22-Fe03015 S22-Fe03213 S22-Fe03213 S22-Fe03213 S22-Fe03213 S22-Fe03213 S22-Fe03213 S22-Fe03213 S22-Fe03213	NCP NCP NCP NCP NCP CP CP CP CP CP CP CP CP CP CP CP CP C	% %	111 99 91 95 Result 1 130 Result 1 111 119 115 104 118 102 119 109 119		75-125 75-125 75-125 75-125 75-125 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Lead Mercury Nickel Zinc Spike - % Recovery Organochlorine Pesticides Endrin Spike - % Recovery Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(b&j)fluoranthene Benzo(k)fluoranthene Fluorene Indeno(1.2.3-cd)pyrene	S22-Fe03081 S22-Fe03081 S22-Fe03524 S22-Fe03081 S22-Fe03081 S22-Fe03213 S22-Fe03213 S22-Fe03213 S22-Fe03213 S22-Fe03213 S22-Fe03213 S22-Fe03213 S22-Fe03213 S22-Fe03213 S22-Fe03213	NCP NCP NCP NCP NCP CP CP CP CP CP CP CP CP CP CP CP CP C	% %	111 99 91 95 Result 1 130 Result 1 111 119 115 104 118 102 119 109 119 129		75-125 75-125 75-125 75-125 75-125 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	

Test	Lab Sample ID	QA Source	Units	Result 1	Acceptanc Limits	e Pass Limits	Qualifying Code
Organochlorine Pesticides				Result 1			
Chlordanes - Total	S22-Fe03213	CP	%	88	70-130	Pass	
4.4'-DDE	S22-Fe03213	CP	%	89	70-130	Pass	
4.4'-DDT	S22-Fe03213	CP	%	109	70-130	Pass	
a-HCH	S22-Fe03213	CP	%	93	70-130	Pass	
Aldrin	S22-Fe03213	CP	%	92	70-130	Pass	
b-HCH	S22-Fe03213	CP	%	100	70-130	Pass	
d-HCH	S22-Fe03213	CP	%	106	70-130	Pass	
Dieldrin	S22-Fe03213	CP	%	101	70-130	Pass	
Endosulfan I	S22-Fe03213	CP	%	109	70-130	Pass	
Endosulfan II	S22-Fe03213	CP	%	107	70-130	Pass	
Endosulfan sulphate	S22-Fe03213	CP	%	73	70-130	Pass	
Endrin ketone	S22-Fe03213	CP	%	93	70-130	Pass	
g-HCH (Lindane)	S22-Fe03213	CP	%	84	70-130	Pass	
Heptachlor	S22-Fe03213	CP	%	113	70-130	Pass	
Heptachlor epoxide	S22-Fe03213	CP	%	111	70-130	Pass	
Hexachlorobenzene	S22-Fe03213	CP	%	96	70-130	Pass	
Spike - % Recovery					· · · ·	•	
Organophosphorus Pesticides				Result 1			
Diazinon	S22-Fe03213	CP	%	118	70-130	Pass	
Fenitrothion	S22-Fe03213	СР	%	130	70-130	Pass	
Mevinphos	S22-Fe03213	CP	%	120	70-130	Pass	
Spike - % Recovery			,.			1.000	
Polycyclic Aromatic Hydrocarl	oons			Result 1			
Acenaphthene	S22-Fe03216	СР	%	126	70-130	Pass	
Anthracene	S22-Fe03216	CP	%	126	70-130	Pass	
Benz(a)anthracene	S22-Fe03216	CP	%	117	70-130	Pass	
Benzo(b&j)fluoranthene	S22-Fe03216	CP	%	112	70-130	Pass	
Fluoranthene	S22-Fe03216	CP	%	124	70-130	Pass	
Naphthalene	S22-Fe03216	CP	%	127	70-130	Pass	
Phenanthrene	S22-Fe03216	CP	%	115	70-130	Pass	
Pyrene	S22-Fe03216	CP	%	125	70-130	Pass	
Spike - % Recovery			,.			1	
Organochlorine Pesticides				Result 1			
Chlordanes - Total	S22-Fe03216	CP	%	102	70-130	Pass	
4.4'-DDD	S22-Fe03216	CP	%	75	70-130	Pass	
4.4'-DDE	S22-Fe03216	CP	%	103	70-130	Pass	
4.4'-DDT	S22-Fe03216	CP	%	123	70-130	Pass	
a-HCH	S22-Fe03216	CP	%	107	70-130	Pass	
Aldrin	S22-Fe03216	CP	%	108	70-130	Pass	
b-HCH	S22-Fe03216	CP	%	114	70-130	Pass	
d-HCH	S22-Fe03216	CP	%	118	70-130	Pass	
Dieldrin	S22-Fe03216	CP	%	117	70-130	Pass	
Endosulfan I	S22-Fe03216	CP	%	124	70-130	Pass	
Endosulfan II	S22-Fe03216	CP	%	122	70-130	Pass	
Endosulfan sulphate	S22-Fe03216	CP	%	87	70-130	Pass	
Endrin ketone	S22-Fe03216	CP	%	110	70-130	Pass	
g-HCH (Lindane)	S22-Fe03216	CP	%	126	70-130	Pass	
Heptachlor	S22-Fe03216	CP	%	127	70-130	Pass	
Heptachlor epoxide	S22-Fe03216	CP	%	128	70-130	Pass	
Hexachlorobenzene	S22-Fe03216	CP	%	110	70-130	Pass	
Spike - % Recovery			70			1 435	
Organophosphorus Pesticides				Result 1			
Ethion	S22-Fe03216	CP	%	74	70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Fenitrothion	S22-Fe03216	CP	%	71			70-130	Pass	
Methyl parathion	S22-Fe03216	CP	%	81			70-130	Pass	
Mevinphos	S22-Fe03216	CP	%	71			70-130	Pass	
Spike - % Recovery				1					
Organochlorine Pesticides				Result 1					
Methoxychlor	S22-Fe08164	NCP	%	70			70-130	Pass	
Spike - % Recovery				1					
Organophosphorus Pesticides				Result 1					
Dimethoate	S22-Fe08164	NCP	%	97			70-130	Pass	
Spike - % Recovery				1					
Total Recoverable Hydrocarbons	1			Result 1					
TRH C6-C9	S22-Fe03220	CP	%	108			70-130	Pass	
Naphthalene	S22-Fe03220	CP	%	100			70-130	Pass	
TRH C6-C10	S22-Fe03220	CP	%	109			70-130	Pass	
Spike - % Recovery				1					
втех	1	,		Result 1					
Benzene	S22-Fe03220	СР	%	98			70-130	Pass	
Toluene	S22-Fe03220	CP	%	90			70-130	Pass	
Ethylbenzene	S22-Fe03220	CP	%	83			70-130	Pass	
m&p-Xylenes	S22-Fe03220	CP	%	85			70-130	Pass	
o-Xylene	S22-Fe03220	CP	%	85			70-130	Pass	
Xylenes - Total*	S22-Fe03220	CP	%	85			70-130	Pass	
Spike - % Recovery				1					
Total Recoverable Hydrocarbons				Result 1					
TRH C10-C14	S22-Fe03222	CP	%	89			70-130	Pass	
TRH >C10-C16	S22-Fe03222	CP	%	85			70-130	Pass	
Spike - % Recovery				I	1		1		
Organochlorine Pesticides				Result 1					
Endrin aldehyde	S22-Fe03306	NCP	%	54			70-130	Fail	Q08
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate				i			1	r	
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD			
TRH C6-C9	S22-Fe03202	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Naphthalene	S22-Fe03202	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S22-Fe03202	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate				1			1		
ВТЕХ				Result 1	Result 2	RPD			
Benzene	S22-Fe03202	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S22-Fe03202	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S22-Fe03202	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S22-Fe03202	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S22-Fe03202	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total*	S22-Fe03202	CP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate				1			1		
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S22-Fe03205	СР	mg/kg	6.5	5.8	13	30%	Pass	
Cadmium	S22-Fe03205	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S22-Fe03205	СР	mg/kg	52	49	5.0	30%	Pass	
Copper	S22-Fe03205	СР	mg/kg	19	18	7.0	30%	Pass	
Lead	S22-Fe03205	СР	mg/kg	12	11	9.0	30%	Pass	
Mercury	S22-Fe03205	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
	C00 E00000E	CP	malka	42	20	10	30%	Pass	
Nickel	S22-Fe03205	UF	mg/kg	42	38	10	30%	Fass	

Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S22-Fe03205	CP	%	7.0	6.9	2.0	30%	Pass	
Duplicate				, <u> </u>				1	
•				Result 1	Result 2	RPD			
% Moisture	S22-Fe03215	СР	%	3.0	3.3	7.0	30%	Pass	
Duplicate	•							1 1	
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD			
TRH C6-C9	S22-Fe03216	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Naphthalene	S22-Fe03216	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S22-Fe03216	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate				•					
BTEX				Result 1	Result 2	RPD			
Benzene	S22-Fe03216	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S22-Fe03216	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S22-Fe03216	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S22-Fe03216	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S22-Fe03216	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total*	S22-Fe03216	CP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate									
Polycyclic Aromatic Hydrocarbons	S			Result 1	Result 2	RPD			
Acenaphthene	S22-Fe03221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S22-Fe03221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S22-Fe03221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S22-Fe03221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S22-Fe03221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S22-Fe03221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S22-Fe03221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S22-Fe03221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S22-Fe03221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S22-Fe03221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S22-Fe03221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S22-Fe03221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S22-Fe03221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S22-Fe03221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S22-Fe03221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S22-Fe03221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate				1	1				
Total Recoverable Hydrocarbons	1			Result 1	Result 2	RPD			
TRH C10-C14	S22-Fe03221	CP	mg/kg	110	81	33	30%	Fail	Q15
TRH C15-C28	S22-Fe03221	CP	mg/kg	870	680	25	30%	Pass	
TRH C29-C36	S22-Fe03221	CP	mg/kg	680	600	12	30%	Pass	
TRH >C10-C16	S22-Fe03221	CP	mg/kg	120	93	25	30%	Pass	
TRH >C16-C34	S22-Fe03221	CP	mg/kg	1400	1100	19	30%	Pass	
TRH >C34-C40	S22-Fe03221	CP	mg/kg	340	320	5.0	30%	Pass	
Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD		+	
Chlordanes - Total	S22-Fe03221	CP	mg/kg	< 1	< 1	<1	30%	Pass	
4.4'-DDD	S22-Fe03221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
4.4'-DDE	S22-Fe03221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
4.4'-DDT	S22-Fe03221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
a-HCH	S22-Fe03221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aldrin	S22-Fe03221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
b-HCH	S22-Fe03221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
d-HCH	S22-Fe03221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dieldrin	S22-Fe03221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	

Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Endosulfan I	S22-Fe03221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Endosulfan II	S22-Fe03221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Endosulfan sulphate	S22-Fe03221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Endrin	S22-Fe03221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Endrin aldehyde	S22-Fe03221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Endrin ketone	S22-Fe03221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
g-HCH (Lindane)	S22-Fe03221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Heptachlor	S22-Fe03221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Heptachlor epoxide	S22-Fe03221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Hexachlorobenzene	S22-Fe03221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Methoxychlor	S22-Fe03221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Toxaphene	S22-Fe03221	CP	mg/kg	< 10	< 10	<1	30%	Pass	
Duplicate		0.		1	110	••	0070	1 400	
Organophosphorus Pesticides	3			Result 1	Result 2	RPD			
Azinphos-methyl	S22-Fe03221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Bolstar	S22-Fe03221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chlorfenvinphos	S22-Fe03221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chlorpyrifos	S22-Fe03221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chlorpyrifos-methyl	S22-Fe03221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Coumaphos	S22-Fe03221	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Demeton-S	S22-Fe03221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Demeton-O	S22-Fe03221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Diazinon	S22-Fe03221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dichlorvos	S22-Fe03221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dimethoate	S22-Fe03221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Disulfoton	S22-Fe03221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
EPN	S22-Fe03221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Ethion	S22-Fe03221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Ethoprop	S22-Fe03221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Ethyl parathion	S22-Fe03221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fenitrothion	S22-Fe03221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fensulfothion	S22-Fe03221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fenthion	S22-Fe03221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Malathion	S22-Fe03221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Merphos	S22-Fe03221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Methyl parathion	S22-Fe03221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Mevinphos	S22-Fe03221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Monocrotophos	S22-Fe03221	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Naled	S22-Fe03221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Omethoate	S22-Fe03221	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Phorate	S22-Fe03221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pirimiphos-methyl	S22-Fe03221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrazophos	S22-Fe03221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Ronnel	S22-Fe03221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Terbufos	S22-Fe03221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Tetrachlorvinphos	S22-Fe03221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Tokuthion	S22-Fe03221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Trichloronate	S22-Fe03221	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	No
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code	Description
G01	The LORs have been raised due to matrix interference
N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.
N07	Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs
Q08	The matrix spike recovery is outside of the recommended acceptance criteria. An acceptable recovery was obtained for the laboratory control sample indicating a sample matrix interference.

Q15 The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised by:

Asim Khan	Analytical Services Manager
Andrew Sullivan	Senior Analyst-Organic (NSW)
John Nguyen	Senior Analyst-Metal (NSW)
Roopesh Rangarajan	Senior Analyst-Volatile (NSW)

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Geotesta Pty Ltd (NSW) Unit 6, 20/22 Foundry Road Seven Hills NSW 2147

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention:

Victor Kirpichnikov (GEOTESTA)

Report	866406-S
Project name	ADDITIONAL: 13 L NARROMINE RD DUBBO
Project ID	NE1167
Received Date	Feb 23, 2022

Client Sample ID			DI-3	DI-5	DI-5-1	D-6-2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S22-Fe51776	S22-Fe51777	S22-Fe51778	S22-Fe51779
Date Sampled			Feb 01, 2022	Feb 01, 2022	Feb 01, 2022	Feb 01, 2022
Test/Reference	LOR	Unit				
Chromium (hexavalent)	1	mg/kg	< 1	< 1	< 1	< 1
% Moisture	1	%	14	13	11	12

Client Sample ID			DI-8-1	DI-10-2	DI-11-1	DI-11-2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S22-Fe51780	S22-Fe51781	S22-Fe51782	S22-Fe51783
Date Sampled			Feb 01, 2022	Feb 01, 2022	Feb 01, 2022	Feb 01, 2022
Test/Reference	LOR	Unit				
Chromium (hexavalent)	1	mg/kg	< 1	< 1	< 1	< 1
% Moisture	1	%	3	3.5	8.8	34

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled Test/Reference	LOR	Unit	DI-12-1 Soil S22-Fe51784 Feb 01, 2022	DI-13-1 Soil S22-Fe51785 Feb 01, 2022	DI-7-2 Soil S22-Fe51786 Feb 01, 2022
Chromium (hexavalent)	1	mg/kg	< 1	< 1	_
% Moisture	1	%	10	5	18
% Clay	1	%	-	-	17
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	-	-	190
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	-	-	7.0
Cation Exchange Capacity					
Cation Exchange Capacity	0.05	meq/100g	-	-	18

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Chromium (hexavalent)	Sydney	Feb 25, 2022	28 Days
- Method: In-house method E057.2			
% Clay	Brisbane	Feb 28, 2022	14 Days
- Method: LTM-GEN-7040			
pH (1:5 Aqueous extract at 25°C as rec.)	Sydney	Feb 25, 2022	7 Days
- Method: LTM-GEN-7090 pH by ISE			
% Moisture	Sydney	Mar 01, 2022	14 Days
- Method: LTM-GEN-7080 Moisture			
Conductivity (1:5 aqueous extract at 25°C as rec.)	Sydney	Feb 25, 2022	7 Days
- Method: LTM-INO-4030 Conductivity			
Cation Exchange Capacity	Melbourne	Feb 28, 2022	28 Days

- Method: LTM-MET-3060 Cation Exchange Capacity by bases & Exchangeable Sodium Percentage

	eurofi	nc		Eurofins Environme ABN: 50 005 085 521	ent Te	sting	Austra	lia Pty	Ltd	Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environment Testing NZ Limited NZBN: 9429046024954				
web: www.eurofins.com.au email: EnviroSales@eurofins.com				Testing	Melbourne		Sydney Unit F3, Building F 5 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217			2066	Brisbane I/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 6253 4444 NATA # 2377 Site # 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290
	Company Name: Geotesta Pty Ltd (NSW) Address: Unit 6, 20/22 Foundry Road Seven Hills NSW 2147							rder N eport hone: ax:	#:		866406 1300852 216		Received: Due: Priority: Contact Name:	Feb 23, 2022 2:13 PM Feb 28, 2022 3 Day Victor Kirpichnikov (GEOTESTA)	
	oject Name: oject ID:								Eurofins Analytica	Il Services Manager :	Asim Khan				
Sample Detail								pH (1:5 Aqueous extract at 25°C as rec.)	Moisture Set	Cation Exchange Capacity					
		ory - NATA # 12		54					X	X	_				
		- NATA # 1261					X	X	X	X	_				
		ry - NATA # 126 ⁻				X				-	4				
		y - NATA # 1261								-	-				
		NATA # 2377 Sit	te # 2370							-	4				
Exte No	rnal Laboratory Sample ID	Sample Date	Sampling	Matrix	LAB ID						-				
NU	Sample ID		Time								4				
1	DI-3	Feb 01, 2022		Soil	S22-Fe51776		Х		Х		4				
2	DI-5	Feb 01, 2022		Soil	S22-Fe51777		X		X	_	4				
3	DI-5-1	Feb 01, 2022		Soil	S22-Fe51778		X		X	+	-				
4	D-6-2	Feb 01, 2022		Soil	S22-Fe51779		X		X	-	-				
5	DI-8-1	Feb 01, 2022		Soil Soil	S22-Fe51780		X X	+	X X	+	-				
6 7	DI-10-2	Feb 01, 2022		Soil	S22-Fe51781		X	-	X	-	-				
-	DI-11-1 DI-11-2	Feb 01, 2022 Feb 01, 2022		Soil	S22-Fe51782		X		X	-	-				
8 9				Soil	S22-Fe51783	<u> </u>	X	-	X	-	-				
9	DI-12-1	Feb 01, 2022			S22-Fe51784		<u> </u>	1	_ ^	1					

🛟 eurofii	ABN	Eurofins Environment Testing Australia Pty Ltd ABN: 50 005 085 521								Eurofins ARL Pty Ltd ABN: 91 05 0159 898	NZBN: 9429046024954			
web: www.eurofins.com.au email: EnviroSales@eurofins.com			sting ^{6 M} Dar Pho	bourne onterey Road idenong South VIC 3 ine : +61 3 8564 500 FA # 1261 Site # 125	0 Lane Cove West NSW 20			NSW 2	1 N 2066 F 0 N	trisbane /21 Smallwood Place /urarrie QLD 4172 /hone : +61 7 3902 4600 IATA # 1261 Site # 20794	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 6253 4444 NATA # 2377 Site # 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290
Company Name: Geotesta Pty Ltd (NSW) Address: Unit 6, 20/22 Foundry Road Seven Hills NSW 2147						Order No.: Report #: Phone: Fax:				866406 1300852 216		Received: Due: Priority: Contact Name:	Feb 23, 2022 2:13 PM Feb 28, 2022 3 Day Victor Kirpichnikov (GEOTESTA)	
Project Name:ADDITIONAL: 13 L NARROMINE RD DUBBOProject ID:NE1167												Eurofins Analytica	Il Services Manager :	Asim Khan
	Sa	mple Detail			% Clay	Chromium (hexavalent)	pH (1:5 Aqueous extract at 25°C as rec.)	Moisture Set	Cation Exchange Capacity					
Melbourne Laborato	ry - NATA # 12	61 Site # 1254						Х	Х					
Sydney Laboratory - NATA # 1261 Site # 18217							Х	х	Х					
Brisbane Laboratory - NATA # 1261 Site # 20794														
Mayfield Laboratory - NATA # 1261 Site # 25079														
Perth Laboratory - NATA # 2377 Site # 2370										1				
External Laboratory			,							1				
10 DI-13-1	Feb 01, 2022	Soi		S22-Fe51785		X		х		1				
11 DI-7-2	Feb 01, 2022	Soi	il :	S22-Fe51786	Х		Х	х	Х	1				
Test Counts						10	1	11	1					

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

onito		
mg/kg: milligrams per kilogram	mg/L: milligrams per litre	µg/L: micrograms per litre
ppm: parts per million	ppb: parts per billion	%: Percentage
org/100 mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100 mL: Most Probable Number of organisms per 100 millilitres

Terms

APHA	American Public Health Association
COC	Chain of Custody
СР	Client Parent - QC was performed on samples pertaining to this report
CRM	Certified Reference Material (ISO17034) - reported as percent recovery.
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
LOR	Limit of Reporting.
LCS	Laboratory Control Sample - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
SRA	Sample Receipt Advice
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
твто	Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.
TCLP	Toxicity Characteristic Leaching Procedure
TEQ	Toxic Equivalency Quotient or Total Equivalence
QSM	US Department of Defense Quality Systems Manual Version 5.4
US EPA	United States Environmental Protection Agency
WA DWER	Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
 - 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank							•		
Chromium (hexavalent)			mg/kg	< 1			1	Pass	
Conductivity (1:5 aqueous extract at	25°C as rec.)		uS/cm	< 10			10	Pass	
LCS - % Recovery									
Chromium (hexavalent)			%	101			70-130	Pass	
Conductivity (1:5 aqueous extract at	25°C as rec.)		%	102			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
				Result 1					
Chromium (hexavalent)	S22-Fe51777	CP	%	84			70-130	Pass	
Test	Test Lab Sample ID QA Source						Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
				Result 1	Result 2	RPD			
Chromium (hexavalent)	S22-Fe51776	CP	mg/kg	< 1	< 1	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Conductivity (1:5 aqueous extract at 25°C as rec.)	S22-Fe51786	СР	uS/cm	190	170	7.7	30%	Pass	
pH (1:5 Aqueous extract at 25°C as rec.)	S22-Fe51786	СР	pH Units	7.0	7.0	<1	30%	Pass	

Comments

Eurofins | Environment Testing accreditation number 1261, site 18217 is currently in progress of a controlled transition to a new custom built location at 179 Magowar Road, Girraween, NSW 2145. All results on this report denoted as being performed by Eurofins | Environment Testing Unit F3, Building F, 16 Mars road, Lane Cove West, NSW 2066, corporate site 18217, will have been performed on either Lane Cove or new Girraween site

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Authorised by:

Emma Beesley Charl Du Preez Emily Rosenberg Jonathon Angell Analytical Services Manager Senior Analyst-Inorganic (NSW) Senior Analyst-Metal (VIC) Senior Analyst-Inorganic (QLD)

Glenn Jackson General Manager

Final Report – this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Certificate of Analysis

Environment Testing

Geotesta Pty Ltd (NSW) Unit 6, 20/22 Foundry Road **Seven Hills NSW 2147**

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025–Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention:	- Mohammad Hossein Bazyar
Report	860033-AID
Project Name	13 L NARROMINE RD DUBBO
Project ID	NE1167
Received Date	Feb 01, 2022
Date Reported	Feb 08, 2022
Methodology:	
Asbestos Fibre Identification	Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques. NOTE: Positive Trace Analysis results indicate the sample contains detectable respirable fibres.
Unknown Mineral Fibres	Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as Electron Microscopy, to confirm unequivocal identity. NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the optical properties of these materials, AS4964 requires that these are reported as UMF unless confirmed by an independent technique.
Subsampling Soil Samples	The whole sample submitted is first dried and then passed through a 10mm sieve followed by a 2mm sieve. All fibrous matter greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a sub-sampling routine based on ISO 3082:2009(E) is employed. NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-sampled for trace analysis, in accordance with AS 4964-2004.
Bonded asbestos- containing material (ACM)	The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964 - 2004. NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.
Limit of Reporting	The performance limitation of the AS 4964 (2004) method for non-homogeneous samples is around 0.1 g/kg (equivalent to 0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis, this is considered to be at the nominal reporting limit of 0.01% (w/w). The NEPM screening level of 0.001% (w/w) is intended as an on-site determination, not a laboratory Limit of Reporting (LOR), per se. Examination of a large sample size (e.g. 500 mL) may improve the likelihood of detecting asbestos, particularly AF, to aid assessment against the NEPM criteria. Gravimetric determinations to this level of accuracy are outside of AS 4964 and hence NATA Accreditation does not cover the performance of this service (non-NATA results shown with an asterisk). NOTE: NATA News March 2014, p.7, states in relation to AS 4964: "This is a qualitative method with a nominal reporting limit of 0.01% " and that currently in Australia "there is no validated method available for the quantification of asbestos". This report is consistent with the analytical procedures and reporting recommendations in the NEPM and the WA DoH.

Project Name	13 L NARROMINE RD DUBBO
Project ID	NE1167
Date Sampled	Feb 01, 2022
Report	860033-AID

Client Sample ID	Eurofins Sample No.	Date Sampled	Sample Description	Result
ASB-7-1	22-Fe03224	Feb 01, 2022	Approximate Sample 606g Sample consisted of: Brown fine-grained clayey soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
ASB-11-1	22-Fe03225	Feb 01, 2022	Approximate Sample 494g Sample consisted of: Red- brown fine-grained clayey soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
ASB12-1	22-Fe03226	Feb 01, 2022	Approximate Sample 361g Sample consisted of: Brown fine-grained clayey soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
ASB-13-1	22-Fe03227	Feb 01, 2022	Approximate Sample 442g Sample consisted of: Brown fine-grained clayey soil, cement and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
ASB-14-1	22-Fe03228	Feb 01, 2022	Approximate Sample 456g Sample consisted of: Brown fine-grained clayey soil, organic debris and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description

Asbestos - LTM-ASB-8020

Testing SiteExtractedSydneyFeb 03, 2022

Holding Time 22 Indefinite

web: w email: f Co	eurofins.com.au enviroSales@eurofins mpany Name: dress:	Geotesta Pty Unit 6, 20/22	Ltd (NSW) Foundry Roa		ABN: 50 005 085 521 Melbourne 6 Monterey Road	Brisbane Newcastle Perth ne Sydney Brisbane Newcastle Perth rey Road Unit F3, Building F 1/21 Smallwood Place 4/52 Industrial Drive 46-48 Banksia Road ng South VIC 3175 16 Mars Road Murarrie QLD 4172 Mayfield East NSW 2304 Welshpool WA 6106 613 8864 5000 Lane Cove West NSW 2066 Phone : +61 7 3902 4600 PO Box 60 Wickham 2233 Phone : +61 8 6253 444				ABN: 91 05 0159 898 Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 Received: Due:	h Auckland Christchurch 8 Banksia Road 35 O'Rorke Road 43 Detroit Drive shpool WA 6106 Penrose, Auckland 1061 Rolleston, Christchurch 76 e: +61 8 6253 4444 IANZ # 1327 IANZ # 1290 Addete: Feb 1, 2022 4:33 PM Je: Feb 8, 2022										
		Seven Hills NSW 2147						none: ax:		1	3008	52 21	5			Priority: Contact Name:	5 Day - Mohammad Hoss	ein Bazvar			
	oject Name: oject ID:		MINE RD DU	JBBO													Contact Name: - Mohammad Hossein Bazyar Eurofins Analytical Services Manager : Asim Khan				
		Sa	mple Detail			Asbestos - AS4964	HOLD	Polycyclic Aromatic Hydrocarbons	Metals M8	BTEX	Suite B14: OCP/OPP	Moisture Set	Total Recoverable Hydrocarbons	Eurofins Suite B10							
Melb	ourne Laborato	ory - NATA # 12	61 Site # 125	54											-						
		- NATA # 1261 3				X	X	Х	X	Х	Х	X	Х	Х	_						
Bris	bane Laborator	y - NATA # 1261	1 Site # 20794	4						'					_						
		/ - NATA # 1261)						ļ'					_						
		NATA # 2377 Sit	te # 2370							ļ'					-						
	rnal Laboratory			1											-						
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID																
1	DI-1-1	Feb 01, 2022		Soil	S22-Fe03201			Х	х			Х]						
2	DI-2-1	Feb 01, 2022		Soil	S22-Fe03202				х			Х	Х								
3	DI-2-3	Feb 01, 2022		Soil	S22-Fe03203			Х	х			Х									
4	DI-3	Feb 01, 2022		Soil	S22-Fe03204				Х			Х	Х								
5	DI-3-2	Feb 01, 2022		Soil	S22-Fe03205			х	х			х									
6	DI-3-3	Feb 01, 2022		Soil	S22-Fe03206				х			Х	Х								
7	DI-4	Feb 01, 2022		Soil	S22-Fe03207				Х		х	Х									
8	DI-4-3	Feb 01, 2022		Soil	S22-Fe03208			Х	Х			Х									
8																					

web: www.eurofins.com.au email: EnviroSales@eurofins	Environment	Testing	Eurofins Environme ABN: 50 005 085 521 Melbourne 6 Monterey Road Dandenong South VIC 3 Phone : +61 3 8564 500 NATA # 1261 Site # 125	S U 175 1 0 L 4 P	iydney Init F3, I 6 Mars I	Building Road ve West	F NSW 2	8 1/ M 066 Pl 0 N	lurarrie hone : ·	allwood QLD 41 +61 7 39		4, N P 14 P	lewcastle /52 Industrial Drive /ayfield East NSW 2304 /0 Box 60 Wickham 2293 /hone : +61 2 4968 8448 IATA # 1261 Site # 25079	Eurofins ARL Pty Ltd ABN: 91 05 0159 898 Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 6253 4444 NATA # 2377 Site # 2370	Eurofins Environment Testing NZ Limited NZBN: 9429046024954 Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Penrose, Auckland 1061 Rolleston, Christchurch 7675 Phone : +64 9 526 45 51 IANZ # 1327			
Company Name: Address:	Geotesta Pty Ltd (NSW) Unit 6, 20/22 Foundry Roa Seven Hills NSW 2147	ad			R(Pl	rder N eport hone: ax:	#:		36003 13008	3 852 21	6			Received: Due: Priority: Contact Name:	Feb 1, 2022 4:33 F Feb 8, 2022 5 Day - Mohammad Hoss			
Project Name: Project ID:	13 L NARROMINE RD DU NE1167	JBBO												Eurofins Analytica	Eurofins Analytical Services Manager : Asim Khan			
	Sample Detail			Asbestos - AS4964	HOLD	Polycyclic Aromatic Hydrocarbons	Metals M8	BTEX	Suite B14: OCP/OPP	Moisture Set	Total Recoverable Hydrocarbons	Eurofins Suite B10						
	ory - NATA # 1261 Site # 125												-					
	- NATA # 1261 Site # 18217			X	X	Х	X	X	X	X	Х	Х	-					
	ry - NATA # 1261 Site # 2079												-					
	y - NATA # 1261 Site # 25079 NATA # 2377 Site # 2370	2											-					
External Laboratory													-					
10 DI-5-1	Feb 01, 2022	Soil	S22-Fe03210				Х			x	x		-					
11 DI-6	Feb 01, 2022	Soil	S22-Fe03211				X		X	X	X		1					
12 D-6-2	Feb 01, 2022	Soil	S22-Fe03212		1	1	X		X	X			1					
13 DI-7-1	Feb 01, 2022	Soil	S22-Fe03213						1	x		Х	1					
14 DI-7-2	Feb 01, 2022	Soil	S22-Fe03214				х		Х	X			1					
15 DI-8-1	Feb 01, 2022	Soil	S22-Fe03215				Х			Х	Х]					
16 DI-9	Feb 01, 2022	Soil	S22-Fe03216							х		Х]					
	Feb 01, 2022	Soil	S22-Fe03217				Х			Х]					
17 D-9				T			Х			Х	х]					
17 D-9 18 DI-10-1	Feb 01, 2022	Soil	S22-Fe03218				· ^			~								
	Feb 01, 2022 Feb 01, 2022	Soil Soil	S22-Fe03218 S22-Fe03219				X		Х	X								

🔅 eurofii	ns		Eurofins Environme ABN: 50 005 085 521	ent Te	sting A	Austra	lia Pty	Ltd						Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environmen NZBN: 9429046024954	t Testing NZ Limited
web: www.eurofins.com.au email: EnviroSales@eurofins.	Environmen	t Testing	Melbourne 6 Monterey Road Dandenong South VIC 3 Phone : +61 3 8564 500 NATA # 1261 Site # 125	U 175 1 0 L 4 P	ydney nit F3, E 6 Mars I ane Cov hone : + ATA # 1	Road ve West -61 2 99	NSW 2	1/ M 066 P 0 N	lurarrie hone : -	allwood QLD 41	72 02 4600	4 N 0 F 94 F	Vewcastle V/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 VATA # 1261 Site # 25079	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 6253 4444 NATA # 2377 Site # 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290
Company Name: Address:	Geotesta Pty Ltd (NSW) Unit 6, 20/22 Foundry R Seven Hills NSW 2147				Re Pl	rder N eport none: ax:	#:		36003 13008	3 52 21	6			Received: Due: Priority: Contact Name:	Feb 1, 2022 4:33 F Feb 8, 2022 5 Day - Mohammad Hoss	
Project Name: Project ID:	13 L NARROMINE RD I NE1167	DUBBO												Eurofins Analytica	I Services Manager :	Asim Khan
	Sample Detai	1		Asbestos - AS4964	HOLD	Polycyclic Aromatic Hydrocarbons	Metals M8	BTEX	Suite B14: OCP/OPP	Moisture Set	Total Recoverable Hydrocarbons	Eurofins Suite B10				
	ory - NATA # 1261 Site # 1												-			
	- NATA # 1261 Site # 1821			X	X	X	X	X	X	X	Х	X	_			
	/ - NATA # 1261 Site # 207												_			
	- NATA # 1261 Site # 250	19											-			
External Laboratory - N	IATA # 2377 Site # 2370					<u> </u>	<u> </u>	<u> </u>		<u> </u>		-	-			
	Feb 01, 2022	Soil	S22-Fe03221							x		x	1			
	Feb 01, 2022	Soil	S22-Fe03222							x		X	1			
	Feb 01, 2022	Soil	S22-Fe03223				1			X		X	1			
23 DI-13-1				1	1								1			
		Soil	S22-Fe03224	X									-			
24 ASB-7-1	Feb 01, 2022 Feb 01, 2022 Feb 01, 2022		S22-Fe03224 S22-Fe03225	X X												
24 ASB-7-1 25 ASB-11-1	Feb 01, 2022	Soil											_			
24 ASB-7-1 25 ASB-11-1 26 ASB12-1	Feb 01, 2022 Feb 01, 2022	Soil Soil	S22-Fe03225	Х									-			
24 ASB-7-1 25 ASB-11-1 26 ASB12-1 27 ASB-13-1	Feb 01, 2022 Feb 01, 2022 Feb 01, 2022 Feb 01, 2022	Soil Soil Soil	S22-Fe03225 S22-Fe03226	X X									-			
24 ASB-7-1 25 ASB-11-1 26 ASB12-1 27 ASB-13-1 28 ASB-14-1	Feb 01, 2022	Soil Soil Soil Soil	S22-Fe03225 S22-Fe03226 S22-Fe03227	X X X			x			x			-			
24 ASB-7-1 25 ASB-11-1 26 ASB12-1 27 ASB-13-1 28 ASB-14-1 29 D-6	Feb 01, 2022 Feb 01, 2022	Soil Soil Soil Soil Soil	S22-Fe03225 S22-Fe03226 S22-Fe03227 S22-Fe03228	X X X	x		x			x			-			

Internal Quality Control Review and Glossary General

- 1. 2. 3
- 4. 5.
- QC data may be available on request. All soil results are reported on a dry basis, unless otherwise stated. Samples were analysed on an 'as received' basis. Information identified on this report with the colour **blue** indicates data provided by customer that may have an impact on the results. Information identified on this report with the colour **orange** indicates sections of the report not covered by the laboratory's scope of NATA accreditation. This report replaces any interim results previously issued.
- 6.

Holding Times

Please refer to the most recent version of the 'Sample Preservation and Container Guide' for holding times (QS3001). If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the

date of sampling, therefore compliance to these may be outside the laboratory's control.

Units	
% w/w: F/fld	Percentage weight-for-weight basis, e.g. of asbestos in asbestos-containing finds in soil samples (% w/w)
F/mL	Airborne fibre filter loading as Fibres (N) per Fields counted (n) Airborne fibre reported concentration as Fibres per millilitre of air drawn over the sampler membrane (C)
g, kg	Mass, e.g. of whole sample (M) or asbestos-containing find within the sample (m)
g/kg L, mL	Concentration in grams per kilogram Volume, e.g. of air as measured in AFM (V = r x t)
L/min	Volume, e.g. or an as measured in At M (V = 1 At) Attorne flower and the flowrate as litres per minute of air drawn over the sampler membrane (r)
min	Time (t), e.g. of air sample collection period
Calculations	
Airborne Fibre Concentration:	$C = \left(\frac{A}{a}\right) \times \left(\frac{N}{n}\right) \times \left(\frac{1}{t}\right) = K \times \left(\frac{N}{n}\right) \times \left(\frac{1}{t}\right)$
Asbestos Content (as asbestos):	$\% w/w = \frac{(m \times P_A)}{M}$
Weighted Average (of asbestos):	$\%_{WA} = \sum \frac{(m \times P_A)_X}{x}$
Terms	
%asbestos	Estimated percentage of asbestos in a given matrix. May be derived from knowledge or experience of the material, informed by HSG264 Appendix 2, else assumed to be 15% in accordance with WA DOH Appendix 2 (P _A).
ACM	Asbestos Containing Materials. Asbestos contained within a non-asbestos matrix, typically presented in bonded (non-friable) condition. For the purposes of the NEPM and WA DOH, ACM corresponds to material larger than 7 mm x 7 mm.
AF	Asbestos Fines. Asbestos contamination within a soil sample, as defined by WA DOH. Includes loose fibre bundles and small pieces of friable and non-friable material such as asbestos cement fragments mixed with soil. Considered under the NEPM as equivalent to "non-bonded / friable".
AFM	Airborne Fibre Monitoring, e.g. by the MFM.
Amosite	Amosite Asbestos Detected. Amosite may also refer to Fibrous Grunerite or Brown Asbestos. Identified in accordance with AS 4964-2004.
AS	Australian Standard.
Asbestos Content (as asbestos)) Total % w/w asbestos content in asbestos-containing finds in a soil sample (% w/w) .
Chrysotile	Chrysotile Asbestos Detected. Chrysotile may also refer to Fibrous Serpentine or White Asbestos. Identified in accordance with AS 4964-2004.
coc	Chain of Custody.
Crocidolite	Crocidolite Asbestos Detected. Crocidolite may also refer to Fibrous Riebeckite or Blue Asbestos. Identified in accordance with AS 4964-2004.
Dry	Sample is dried by heating prior to analysis.
DS	Dispersion Staining. Technique required for Unequivocal Identification of asbestos fibres by PLM.
FA	Fibrous Asbestos. Asbestos containing material that is wholly or in part friable, including materials with higher asbestos content with a propensity to become friable with handling, and any material that was previously non-friable and in a severely degraded condition. For the purposes of the NEPM and WA DOH, FA generally corresponds to material larger than 7 mm x 7 mm, although FA may be more difficult to visibly distinguish and may be assessed as AF.
Fibre Count	Total of all fibres (whether asbestos or not) meeting the counting criteria set out in the NOHSC:3003
Fibre ID	Fibre Identification. Unequivocal identification of asbestos fibres according to AS 4964-2004. Includes Chrysotile, Amosite (Grunerite) or Crocidolite asbestos.
Friable	Asbestos-containing materials of any size that may be broken or crumbled by hand pressure. For the purposes of the NEPM, this includes both AF and FA. It is outside of the laboratory's remit to assess degree of friability.
HSG248	UK HSE HSG248, Asbestos: The Analysts Guide, 2nd Edition (2021).
HSG264	UK HSE HSG264, Asbestos: The Survey Guide (2012).
ISO (also ISO/IEC)	International Organization for Standardization / International Electrotechnical Commission.
K Factor	Microscope constant (K) as derived from the effective filter area of the given AFM membrane used for collecting the sample (A) and the projected eyepiece graticule area of the specific microscope used for the analysis (a).
LOR	Limit of Reporting.
MFM (also NOHSC:3003)	Membrane Filter Method. As described by the Australian Government National Occupational Health and Safety Commission, Guidance Note on the Membrane Filter Method for Estimating Airborne Asbestos Fibres, 2nd Edition [NOHSC:3003(2005)].
NEPM (also ASC NEPM)	National Environment Protection (Assessment of Site Contamination) Measure, (2013, as amended).
Organic	Organic Fibres Detected. Organic may refer to Natural or Man-Made Polymeric Fibres. Identified in accordance with AS 4964-2004.
PCM	Phase Contrast Microscopy. As used for Fibre Counting according to the MFM.
PLM	Polarised Light Microscopy. As used for Fibre Identification and Trace Analysis according to AS 4964-2004.
SMF	Synthetic Mineral Fibre Detected. SMF may also refer to Man Made Vitreous Fibres. Identified in accordance with AS 4964-2004.
SRA	Sample Receipt Advice.
Trace Analysis	Analytical procedure used to detect the presence of respirable fibres (particularly asbestos) in a given sample matrix.
UK HSE HSG	United Kingdom, Health and Safety Executive, Health and Safety Guidance, publication.
UMF	Unidentified Mineral Fibre Detected. Fibrous minerals that are detected but have not been unequivocally identified by PLM with DS according the AS 4964-2004. May include (but not limited to) Actinolite, Anthophyllite or Tremolite asbestos.
WA DOH	Reference document for the NEPM. Government of Western Australia, Guidelines for the Assessment, Remediation and Management of Asbestos- Contaminated Sites in Western Australia (updated 2021), including Appendix Four: Laboratory analysis
Weighted Average	Combined average % w/w asbestos content of all asbestos-containing finds in the given aliquot or total soil sample (%wA).

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	No
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Asbestos Counter/Identifier:

Laxman Dias

Senior Analyst-Asbestos (NSW)

Authorised by:

Sayeed Abu

Senior Analyst-Asbestos (NSW)

li filo

Glenn Jackson General Manager

Final Report – this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Geotesta Pty Ltd (NSW) Unit 6, 20/22 Foundry Road Seven Hills NSW 2147

Attention:

- Mohammad Hossein Bazyar

Report Project name Project ID Received Date 859443-W 13L NARROMINE ROAD DUBBO NE1167 Feb 01, 2022

Client Sample ID			W-1
Sample Matrix			Water
Eurofins Sample No.			S22-Ja40054
Date Sampled			Feb 01, 2022
Test/Reference	LOR	Unit	
Total Recoverable Hydrocarbons			
TRH C6-C9	0.02	mg/L	< 0.02
TRH C10-C14	0.05	mg/L	< 0.05
TRH C15-C28	0.1	mg/L	< 0.1
TRH C29-C36	0.1	mg/L	< 0.1
TRH C10-C36 (Total)	0.1	mg/L	< 0.1
Naphthalene ^{N02}	0.01	mg/L	< 0.01
TRH C6-C10	0.02	mg/L	< 0.02
TRH C6-C10 less BTEX (F1) ^{N04}	0.02	mg/L	< 0.02
TRH >C10-C16	0.05	mg/L	< 0.05
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05
TRH >C16-C34	0.1	mg/L	< 0.1
TRH >C34-C40	0.1	mg/L	< 0.1
TRH >C10-C40 (total)*	0.1	mg/L	< 0.1
Organochlorine Pesticides			
Chlordanes - Total	0.002	mg/L	< 0.002
4.4'-DDD	0.0002	mg/L	< 0.0002
4.4'-DDE	0.0002	mg/L	< 0.0002
4.4'-DDT	0.0002	mg/L	< 0.0002
а-НСН	0.0002	mg/L	< 0.0002
Aldrin	0.0002	mg/L	< 0.0002
b-HCH	0.0002	mg/L	< 0.0002
d-HCH	0.0002	mg/L	< 0.0002
Dieldrin	0.0002	mg/L	< 0.0002
Endosulfan I	0.0002	mg/L	< 0.0002
Endosulfan II	0.0002	mg/L	< 0.0002
Endosulfan sulphate	0.0002	mg/L	< 0.0002
Endrin	0.0002	mg/L	< 0.0002
Endrin aldehyde	0.0002	mg/L	< 0.0002
Endrin ketone	0.0002	mg/L	< 0.0002
g-HCH (Lindane)	0.0002	mg/L	< 0.0002
Heptachlor	0.0002	mg/L	< 0.0002
Heptachlor epoxide	0.0002	mg/L	< 0.0002
Hexachlorobenzene	0.0002	mg/L	< 0.0002
Methoxychlor	0.0002	mg/L	< 0.0002
Toxaphene	0.005	mg/L	< 0.005

Client Sample ID			W-1
Sample Matrix			Water
Eurofins Sample No.			S22-Ja40054
Date Sampled			Feb 01, 2022
Test/Reference	LOR	Unit	
Organochlorine Pesticides	LOR	Onit	
Aldrin and Dieldrin (Total)*	0.0002	ma/l	< 0.0002
DDT + DDE + DDD (Total)*	0.0002	mg/L	< 0.0002
Vic EPA IWRG 621 OCP (Total)*	0.0002	mg/L	< 0.0002
Vic EPA IWRG 621 Other OCP (Total)*	0.002	mg/L mg/L	< 0.002
Dibutylchlorendate (surr.)	1	111g/L %	130
Tetrachloro-m-xylene (surr.)	1	%	89
Organophosphorus Pesticides	1	70	03
	0.002		.0.002
Azinphos-methyl	0.002	mg/L	< 0.002
Bolstar	0.002	mg/L	< 0.002
Chlorfenvinphos		mg/L	< 0.02
Chlorpyrifos Chlorpyrifos-methyl	0.002	mg/L	< 0.002
	0.002	mg/L	< 0.002
Coumaphos Demeton-S	0.02	mg/L	< 0.02
Demeton-O	0.002	mg/L	< 0.002
	0.002	mg/L	< 0.002
Diazinon Dichlorvos	0.002	mg/L	< 0.002
Dimethoate	0.002	mg/L	< 0.002
Disulfoton	0.002	mg/L	< 0.002
EPN	0.002	mg/L mg/L	< 0.002 < 0.002
Ethion			
Ethoprop	0.002	mg/L mg/L	< 0.002 < 0.002
Ethyl parathion	0.002	mg/L	< 0.002
Fenitrothion	0.002	mg/L	< 0.002
Fensulfothion	0.002	mg/L	< 0.002
Fenthion	0.002	mg/L	< 0.002
Malathion	0.002	mg/L	< 0.002
Merphos	0.002	mg/L	< 0.002
Methyl parathion	0.002	mg/L	< 0.002
Mevinphos	0.002	mg/L	< 0.002
Monocrotophos	0.002	mg/L	< 0.002
Naled	0.002	mg/L	< 0.002
Omethoate	0.02	mg/L	< 0.02
Phorate	0.002	mg/L	< 0.002
Pirimiphos-methyl	0.02	mg/L	< 0.02
Pyrazophos	0.002	mg/L	< 0.002
Ronnel	0.002	mg/L	< 0.002
Terbufos	0.002	mg/L	< 0.002
Tetrachlorvinphos	0.002	mg/L	< 0.002
Tokuthion	0.002	mg/L	< 0.002
Trichloronate	0.002	mg/L	< 0.002
Triphenylphosphate (surr.)	1	%	101
Biochemical Oxygen Demand (BOD-5 Day)	5	mg/L	
Conductivity (at 25°C)	10	uS/cm	180
Dissolved Oxygen	0.01	mg/L	8.9
Dissolved Oxygen (% Saturation)		%	98
Nitrate & Nitrite (as N)	0.05	mg/L	< 0.05
pH (at 25 °C)	0.1	pH Units	

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			W-1 Water S22-Ja40054 Feb 01, 2022
Test/Reference	LOR	Unit	
Phosphate total (as P)	0.01	mg/L	0.24
Salinity (expressed as TDS)* Total Kjeldahl Nitrogen (as N)	10 0.2	mg/L mg/L	300 2.4
Total Nitrogen (as N)*	0.2	mg/L	2.4
Turbidity	1	NTU	110
Heavy Metals			
Arsenic	0.001	mg/L	0.002
Cadmium	0.0002	mg/L	< 0.0002
Chromium	0.001	mg/L	0.006
Copper	0.001	mg/L	0.011
Lead	0.001	mg/L	0.002
Mercury	0.0001	mg/L	< 0.0001
Nickel	0.001	mg/L	0.017
Zinc	0.005	mg/L	0.010
Pathogens			
E.coli (MPN)	1	MPN/100mL	^{N06} see attached
Thermotolerant Coliforms (MPN)	1	MPN/100mL	^{N06} see attached

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	Feb 02, 2022	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Feb 02, 2022	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Feb 02, 2022	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Suite B14: OCP/OPP			
Organochlorine Pesticides	Melbourne	Feb 02, 2022	7 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water (USEPA 8270)			
Organophosphorus Pesticides	Melbourne	Feb 02, 2022	7 Days
- Method: LTM-ORG-2200 Organophosphorus Pesticides by GC-MS (USEPA 8270)			
Biochemical Oxygen Demand (BOD-5 Day)	Melbourne	Feb 02, 2022	2 Days
- Method: LTM-INO-4010 Biochemical Oxygen Demand (BOD5) in Water			
Conductivity (at 25°C)	Melbourne	Feb 02, 2022	28 Days
- Method: LTM-INO-4030 Conductivity			
Dissolved Oxygen	Melbourne	Feb 03, 2022	28 Days
- Method: APHA 4500-O B, C, G using Dissolved Oxygen analyser			
Dissolved Oxygen (% Saturation)	Melbourne	Feb 03, 2022	1 Days
- Method: APHA 4500-O B, C, G using Dissolved Oxygen analyser			
pH (at 25 °C)	Melbourne	Feb 02, 2022	0 Hours
- Method: LTM-GEN-7090 pH in water by ISE			
Salinity (expressed as TDS)*	Melbourne	Feb 02, 2022	7 Days
- Method: LTM-INO-4030			
Turbidity	Melbourne	Feb 02, 2022	28 Days
- Method: Turbidity by classical using APHA 2130B (LTM-INO-4140)			
Metals M8	Melbourne	Feb 02, 2022	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Thermotolerant Coliforms (MPN)	WaterTestingVic	Feb 01, 2022	24 Hours
- Method: LTM-MIC-6623 Thermotolerant Coliforms by MPN			
Total Nitrogen Set (as N)			
Nitrate & Nitrite (as N)	Melbourne	Feb 02, 2022	28 Days
- Method: LTM-INO-4120 Analysis of NOx NO2 NH3 by FIA			
Total Kjeldahl Nitrogen (as N)	Melbourne	Feb 02, 2022	28 Days
- Method: APHA 4500-Norg B,D Total Kjeldahl Nitrogen by FIA			
Eurofins Suite B19A: Total N (TKN, NOx), Total P			
Phosphate total (as P)	Melbourne	Feb 02, 2022	28 Days
- Method: LTM-INO-4040 Phosphate by CFA			

web: www.eurofins.com.au email: EnviroSales@eurofins.com	nvironment	Testing	Eurofins Environme ABN: 50 005 085 521 Melbourne Monterey Road Jandenong South VIC 3 Phone : +61 3 8564 500 NATA # 1261 Site # 125	S U 3175 1 0 La 54 P	ydney Init F3, E 6 Mars I ane Cov	Building	F NSW 2 900 840	Bi 1/ 066 Pt 0 N/	urarrie hone : +	allwood QLD 41 +61 7 39		4 N F 14 F	Vewcasti 1/52 Indus 1/52 Indus 1/	strial Dr East NS 0 Wickl 61 2 49	W 2304 nam 229 68 8448	- A - P - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4	Eurofins ARL Pty Ltd kBN: 91 05 0159 898 Perth 6-48 Banksia Road Velshpool WA 6106 Phone : +61 8 6253 4444 IATA # 2377 Site # 2370	Eurofins Environmen NZBN: 9429046024954 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290
		ad			R	rder N eport hone: ax:			35944 3008	3 52 21	6						Received: Due: Priority: Contact Name:	Feb 1, 2022 5:35 F Feb 8, 2022 5 Day - Mohammad Hoss	
Project Name: 13L NAR Project ID: NE1167	ROMINE ROAD	DUBBO															Eurofins Analytica	Il Services Manager :	Asim Khan
	Sample Detail			Biochemical Oxygen Demand (BOD-5 Day)	Conductivity (at 25°C)	Dissolved Oxygen	Dissolved Oxygen (% Saturation)	E.coli (MPN)	pH (at 25 °C)	Salinity (expressed as TDS)*	Thermotolerant Coliforms (MPN)	Turbidity	Metals M8	Suite B14: OCP/OPP	Total Recoverable Hydrocarbons	Eurofins Suite B19A: Total N (TKN, NOx), Total P			
Melbourne Laboratory - NATA	1261 Site # 12	54		Х	Х	Х	х		Х	Х		Х	Х	Х	Х	Х			
Sydney Laboratory - NATA # 12																	4		
Brisbane Laboratory - NATA #																	4		
Mayfield Laboratory - NATA # 1		9															-		
Perth Laboratory - NATA # 2377 External Laboratory	Sile # 23/0				-	+		x			x						-		
No Sample ID Sample Da	te Sampling Time	Matrix	LAB ID														-		
1 W-1 Feb 01, 202	_	Water	S22-Ja40054	Х	Х	Х	х	Х	Х	Х	х	Х	Х	Х	Х	Х]		
Test Counts				1	1	1	1	1	1	1	1	1	1	1	1	1			

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

enne.		
mg/kg: milligrams per kilogram	mg/L: milligrams per litre	μg/L: micrograms per litre
ppm: parts per million	ppb: parts per billion	%: Percentage
org/100 mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100 mL: Most Probable Number of organisms per 100 millilitres

Terms

Terms	
APHA	American Public Health Association
COC	Chain of Custody
СР	Client Parent - QC was performed on samples pertaining to this report
CRM	Certified Reference Material (ISO17034) - reported as percent recovery.
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
LOR	Limit of Reporting.
LCS	Laboratory Control Sample - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
SRA	Sample Receipt Advice
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
ТВТО	Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.
TCLP	Toxicity Characteristic Leaching Procedure
TEQ	Toxic Equivalency Quotient or Total Equivalence
QSM	US Department of Defense Quality Systems Manual Version 5.4
US EPA	United States Environmental Protection Agency
WA DWER	Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons					
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
Naphthalene	mg/L	< 0.01	0.01	Pass	
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
TRH >C10-C16	mg/L	< 0.05	0.05	Pass	
TRH >C16-C34	mg/L	< 0.1	0.1	Pass	
TRH >C34-C40	mg/L	< 0.1	0.1	Pass	
Method Blank					
Organochlorine Pesticides					
Chlordanes - Total	mg/L	< 0.002	0.002	Pass	
4.4'-DDD	mg/L	< 0.0002	0.0002	Pass	
4.4'-DDE	mg/L	< 0.0002	0.0002	Pass	
4.4'-DDT	mg/L	< 0.0002	0.0002	Pass	
a-HCH	mg/L	< 0.0002	0.0002	Pass	
Aldrin	mg/L	< 0.0002	0.0002	Pass	
b-HCH	mg/L	< 0.0002	0.0002	Pass	
d-HCH	mg/L	< 0.0002	0.0002	Pass	
Dieldrin	mg/L	< 0.0002	0.0002	Pass	
Endosulfan I	mg/L	< 0.0002	0.0002	Pass	
Endosulfan II	mg/L	< 0.0002	0.0002	Pass	
Endosulfan sulphate	mg/L	< 0.0002	0.0002	Pass	
Endrin	mg/L	< 0.0002	0.0002	Pass	
Endrin aldehyde	mg/L	< 0.0002	0.0002	Pass	
Endrin ketone	mg/L	< 0.0002	0.0002	Pass	
g-HCH (Lindane)	mg/L	< 0.0002	0.0002	Pass	
Heptachlor	mg/L	< 0.0002	0.0002	Pass	
Heptachlor epoxide	mg/L	< 0.0002	0.0002	Pass	
Hexachlorobenzene	mg/L	< 0.0002	0.0002	Pass	
Methoxychlor	mg/L	< 0.0002	0.0002	Pass	
Toxaphene	mg/L	< 0.005	0.005	Pass	
Method Blank					
Organophosphorus Pesticides					
Azinphos-methyl	mg/L	< 0.002	0.002	Pass	
Bolstar	mg/L	< 0.002	0.002	Pass	
Chlorfenvinphos	mg/L	< 0.02	0.02	Pass	
Chlorpyrifos	mg/L	< 0.002	0.002	Pass	
Chlorpyrifos-methyl	mg/L	< 0.002	0.002	Pass	
Coumaphos	mg/L	< 0.02	0.02	Pass	
Demeton-S	mg/L	< 0.002	0.002	Pass	
Demeton-O	mg/L	< 0.002	0.002	Pass	
Diazinon	mg/L	< 0.002	0.002	Pass	
Dichlorvos	mg/L	< 0.002	0.002	Pass	
Dimethoate	mg/L	< 0.002	0.002	Pass	
Disulfoton	mg/L	< 0.002	0.002	Pass	
EPN	mg/L	< 0.002	0.002	Pass	
Ethion	mg/L	< 0.002	0.002	Pass	
Ethoprop	mg/L	< 0.002	0.002	Pass	
Ethyl parathion	mg/L	< 0.002	0.002	Pass	

Test	Units	Result 1	Ac	cceptance Limits	Pass Limits	Qualifying Code
Fenitrothion	mg/L	< 0.002		0.002	Pass	
Fensulfothion	mg/L	< 0.002		0.002	Pass	
Fenthion	mg/L	< 0.002		0.002	Pass	
Malathion	mg/L	< 0.002		0.002	Pass	
Merphos	mg/L	< 0.002		0.002	Pass	
Methyl parathion	mg/L	< 0.002		0.002	Pass	
Mevinphos	mg/L	< 0.002		0.002	Pass	
Monocrotophos	mg/L	< 0.002		0.002	Pass	
Naled	mg/L	< 0.002		0.002	Pass	
Omethoate	mg/L	< 0.02		0.02	Pass	
Phorate	mg/L	< 0.002		0.002	Pass	
Pirimiphos-methyl	mg/L	< 0.02		0.02	Pass	
Pyrazophos	mg/L	< 0.002		0.002	Pass	
Ronnel	mg/L	< 0.002		0.002	Pass	
Terbufos	mg/L	< 0.002		0.002	Pass	
Tetrachlorvinphos	mg/L	< 0.002		0.002	Pass	
Tokuthion	mg/L	< 0.002		0.002	Pass	
Trichloronate	mg/L	< 0.002		0.002	Pass	
Method Blank						
Conductivity (at 25°C)	uS/cm	< 10		10	Pass	
Dissolved Oxygen (% Saturation)	%	110			N/A	
Nitrate & Nitrite (as N)	mg/L	< 0.05		0.05	Pass	
Phosphate total (as P)	mg/L	0.01		0.01	Pass	
Salinity (expressed as TDS)*	mg/L	< 10		10	Pass	
Total Kjeldahl Nitrogen (as N)	mg/L	< 0.2		0.2	Pass	
Method Blank						
Heavy Metals						
Arsenic	mg/L	< 0.001		0.001	Pass	
Cadmium	mg/L	< 0.0002		0.0002	Pass	
Chromium	mg/L	< 0.001		0.001	Pass	
Copper	mg/L	< 0.001		0.001	Pass	
Lead	mg/L	< 0.001		0.001	Pass	
Mercury	mg/L	< 0.0001		0.0001	Pass	
Nickel	mg/L	< 0.001		0.001	Pass	
Zinc	mg/L	< 0.005		0.005	Pass	
LCS - % Recovery						
Total Recoverable Hydrocarbons						
TRH C6-C9	%	118		70-130	Pass	
TRH C10-C14	%	79		70-130	Pass	
Naphthalene	%	92		70-130	Pass	
TRH C6-C10	%	119		70-130	Pass	
TRH >C10-C16	%	86		70-130	Pass	
LCS - % Recovery						
Organochlorine Pesticides						
Chlordanes - Total	%	77		70-130	Pass	
4.4'-DDD	%	80		70-130	Pass	
4.4'-DDE	%	84		70-130	Pass	
4.4'-DDT	%	77		70-130	Pass	
a-HCH	%	76		70-130	Pass	
Aldrin	%	80		70-130	Pass	
b-HCH	%	87		70-130	Pass	
d-HCH	%	79		70-130	Pass	
Dieldrin	%	90		70-130	Pass	
Endosulfan I	%	105		70-130	Pass	

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Endosulfan II			%	102		70-130	Pass	
Endosulfan sulphate			%	90		70-130	Pass	
Endrin			%	78		70-130	Pass	
Endrin ketone			%	80		70-130	Pass	
g-HCH (Lindane)			%	76		70-130	Pass	
Heptachlor			%	78		70-130	Pass	
Heptachlor epoxide			%	72		70-130	Pass	
Hexachlorobenzene			%	78		70-130	Pass	
Methoxychlor			%	86		70-130	Pass	
LCS - % Recovery					1 1			
Organophosphorus Pesticides								
Diazinon			%	114		70-130	Pass	
Dimethoate			%	95		70-130	Pass	
Ethion			%	70		70-130	Pass	
Fenitrothion			%	94		70-130	Pass	
Methyl parathion			%	70		70-130	Pass	
Mevinphos			%	92		70-130	Pass	
LCS - % Recovery			,,,					
Conductivity (at 25°C)			%	106		70-130	Pass	
Nitrate & Nitrite (as N)			%	109		70-130	Pass	
Phosphate total (as P)			%	100		70-130	Pass	
Total Kjeldahl Nitrogen (as N)			%	98		70-130	Pass	
LCS - % Recovery			70	1 30		10 100	1 433	
Heavy Metals								
Arsenic			%	97		80-120	Pass	
Cadmium			%	98		80-120	Pass	
Chromium			%	90		80-120	Pass	
			%	97		80-120	Pass	
Copper Lead			%	107		80-120	Pass	
Mercury			%	97				
· · · · · · · · · · · · · · · · · · ·				97		80-120	Pass	
Nickel			%	97		80-120	Pass	
Zinc		QA	70	99		80-120	Pass Pass	Qualifying
Test	Lab Sample ID	Source	Units	Result 1		Acceptance Limits	Limits	Code
Spike - % Recovery				1			[
Total Recoverable Hydrocarbons				Result 1				
TRH C6-C9	M22-Fe01502	NCP	%	104		70-130	Pass	
TRH C10-C14	M22-Fe05149	NCP	%	93		70-130	Pass	
Naphthalene	M22-Fe01502	NCP	%	76		70-130	Pass	
TRH C6-C10	M22-Fe01502	NCP	%	105		70-130	Pass	
TRH >C10-C16	M22-Fe05149	NCP	%	102		70-130	Pass	
Spike - % Recovery				1	r r			
				Result 1				
Nitrate & Nitrite (as N)	S22-Fe02403	NCP	%	105		70-130	Pass	
Total Kjeldahl Nitrogen (as N)	M22-Fe04387	NCP	%	94		70-130	Pass	
Spike - % Recovery				1				
Heavy Metals				Result 1				
				104		75-125	Pass	
Arsenic	S22-Fe03944	NCP	%	104				
	S22-Fe03944 S22-Fe03944	NCP NCP	% %	82		75-125	Pass	
Arsenic						75-125 75-125	Pass Pass	
Arsenic Cadmium	S22-Fe03944	NCP	%	82				
Arsenic Cadmium Chromium	S22-Fe03944 S22-Fe03944	NCP NCP	% %	82 96		75-125	Pass	
Arsenic Cadmium Chromium Copper	S22-Fe03944 S22-Fe03944 S22-Fe03944	NCP NCP NCP	% % %	82 96 88		75-125 75-125	Pass Pass	
Arsenic Cadmium Chromium Copper Lead	S22-Fe03944 S22-Fe03944 S22-Fe03944 S22-Fe03944 S22-Fe03944	NCP NCP NCP NCP	% % %	82 96 88 77		75-125 75-125 75-125	Pass Pass Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarbons	6			Result 1	Result 2	RPD			
TRH C6-C9	M22-Fe01508	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH C10-C14	M22-Fe05148	NCP	mg/L	12	11	10	30%	Pass	
TRH C15-C28	M22-Fe05148	NCP	mg/L	0.5	0.2	86	30%	Fail	Q15
TRH C29-C36	M22-Fe05148	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Naphthalene	M22-Fe01508	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
TRH C6-C10	M22-Fe01508	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH >C10-C16	M22-Fe05148	NCP	mg/L	3.6	3.0	18	30%	Pass	
TRH >C16-C34	M22-Fe05148	NCP	mg/L	0.2	< 0.1	200	30%	Fail	Q15
TRH >C34-C40	M22-Fe05148	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	L22-Fe01310	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
4.4'-DDD	L22-Fe01310	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
4.4'-DDE	L22-Fe01310	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
4.4'-DDT	L22-Fe01310	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
a-HCH	L22-Fe01310	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Aldrin	L22-Fe01310	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
b-HCH	L22-Fe01310	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
d-HCH	L22-Fe01310	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Dieldrin	L22-Fe01310	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endosulfan I	L22-Fe01310	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endosulfan II	L22-Fe01310	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endosulfan sulphate	L22-Fe01310	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endrin	L22-Fe01310	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endrin aldehyde	L22-Fe01310	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endrin ketone	L22-Fe01310	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
g-HCH (Lindane)	L22-Fe01310	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Heptachlor	L22-Fe01310	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Hexachlorobenzene	L22-Fe01310	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Methoxychlor	L22-Fe01310	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Toxaphene	L22-Fe01310	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Duplicate					1		1	1	
Organophosphorus Pesticides				Result 1	Result 2	RPD			
Azinphos-methyl	L22-Fe01310	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Bolstar	L22-Fe01310	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Chlorfenvinphos	L22-Fe01310	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Chlorpyrifos	L22-Fe01310	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Chlorpyrifos-methyl	L22-Fe01310	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Coumaphos	L22-Fe01310	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Demeton-S	L22-Fe01310	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Demeton-O	L22-Fe01310	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Diazinon	L22-Fe01310	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Dichlorvos	L22-Fe01310	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Dimethoate	L22-Fe01310	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Disulfoton	L22-Fe01310	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
EPN	L22-Fe01310	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Ethion	L22-Fe01310	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Ethoprop	L22-Fe01310	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Ethyl parathion	L22-Fe01310	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Fenitrothion	L22-Fe01310	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Fensulfothion	L22-Fe01310	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Fenthion	L22-Fe01310	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	

Duplicate				D					
Organophosphorus Pesticides	1			Result 1	Result 2	RPD			
Malathion	L22-Fe01310	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Merphos	L22-Fe01310	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Methyl parathion	L22-Fe01310	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Mevinphos	L22-Fe01310	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Monocrotophos	L22-Fe01310	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Naled	L22-Fe01310	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Omethoate	L22-Fe01310	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Phorate	L22-Fe01310	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Pirimiphos-methyl	L22-Fe01310	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Pyrazophos	L22-Fe01310	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Ronnel	L22-Fe01310	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Terbufos	L22-Fe01310	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Tetrachlorvinphos	L22-Fe01310	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Tokuthion	L22-Fe01310	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Trichloronate	L22-Fe01310	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Duplicate	÷			•					
				Result 1	Result 2	RPD			
Conductivity (at 25°C)	M22-Fe00576	NCP	uS/cm	< 10	< 10	<1	30%	Pass	
Dissolved Oxygen	S22-Ja16511	NCP	mg/L	8.9	8.8	2.0	30%	Pass	
Dissolved Oxygen (% Saturation)	S22-Ja40054	CP	%	98	97	2.0	30%	Pass	
Nitrate & Nitrite (as N)	S22-Fe02403	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
pH (at 25 °C)	M22-Fe00576	NCP	pH Units	5.0	5.0	pass	30%	Pass	
Phosphate total (as P)	B22-Ja38001	NCP	mg/L	0.07	0.08	10	30%	Pass	
Total Kjeldahl Nitrogen (as N)	B22-Fe00402	NCP	mg/L	0.3	0.4	40	30%	Fail	Q15
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S22-Fe03944	NCP	mg/L	0.002	0.002	8.0	30%	Pass	
Cadmium	S22-Fe03944	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium	S22-Fe03944	NCP	mg/L	0.003	0.003	12	30%	Pass	
Copper	S22-Fe03944	NCP	mg/L	0.017	0.017	4.0	30%	Pass	
Lead	S22-Fe03944	NCP	mg/L	0.010	0.010	2.0	30%	Pass	
Mercury	S22-Fe03944	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel	S22-Fe03944	NCP	mg/L	0.007	0.007	4.0	30%	Pass	
Zinc	S22-Fe03944	NCP	mg/L	0.030	0.031	2.0	30%	Pass	

Comments

E.coli and Thermotolerant Coliforms analysed by: Eurofins Food Testing Australia Pty Ltd, NATA Accreditation number: 20293, report reference AR-22-NV-001350-01.

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.
N06	This result has been produced by a third-party laboratory and is not covered by Eurofins Environment Testing lab ISO/IEC 17025 accreditation.
Q15	The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised by:

Emily Rosenberg	Senior Analyst-Metal (VIC)
Joseph Edouard	Senior Analyst-Organic (VIC)
Scott Beddoes	Senior Analyst-Inorganic (VIC)
Vivian Wang	Senior Analyst-Volatile (VIC)

Glenn Jackson General Manager

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

🕸 eurofins

mgt

Sydney Unit F3 - 6 Building F, 16 Mars Road, Lane Cove Phone: +612 8900 8400 Email: EnviroSampleNSW@eurofins.com.au

Dirisbane Unit 1-21 Smallwood Place, Murrarie Phone: +617 3302 4600 Email: EnviroSampleQLD@eurofins.com.au

Melbourne

Alfabotanne
 Kingston Town Close, Oakleigh, VIC 3166
 Phone: +613 8564 5000 Fax: +613 8564 5090
 Email: EnviroSampleVic@eurofins.com.au

۱.

CHAIN OF CUSTODY RECORD

OLIENT	DETAILS											Ur	AUN	FOF		031	00	TR		JRD						_				
ULIENÍ	100 STRANE 111			Car	ntact Nan	TIO:			Viet	or View	nheit	10-	Mohr		Der		Dur	ase Ort	lorr	A.14	4007					loos ::	Page	1	of	2
ompan	y Name : Geotesta				_						ichniko			_							E1295				_	COC Numb	er :			
ffice A	ddress : Unit 06, 2	0-22 Found	y Road,		ject Man	-					ichniko				-			ECT Nu		NE	£1295	_				Eurofins mgt quote ID :				
Sever	n Hills 2147			Em	ail for <i>r</i> es	sults :			vk@	Dgeot	esta.c	:om.a	u, mt	o@qe	otes	sta.co	PROJ	ECT Na	me :	Lo	it 7 DP22	3428 Na	rromine	Road Dub	bo	Data output	t format:			
Phon	e: 452454418	-										Anal	/tes								T			Some co	mmon hold in For further i	ng times (with information cor	correct p	reservation).		
pecial	Directions & Comments :			Ŧ		T					TT		TT						ГТ		1		Wab	15				Soil	5	_
					M		11														BTEX	MAH, VO	C	_	14 days	BTEX, M				14
				1	oð								11								TRH,	PAH, Pher	ols. Pestic	ides	7 days	-		s, Pesticides		14
_					NEPM w/w	11							11								Heavy	/Metals			6 months	Heavy Me		, resultes		5 1
					l in s					TRH's			1 1								Mercu	ry, CrVI			28 days	Merculy,				28
					- %					Ë											Microl	biological to	esting		24 hours	-	ogical testi	ing		72
					100	20				Volatile											BOD,	Nitrate, Nit	irite, Total	N	2 days	Anions				28
				4	Ed	2				ŝ											Solids	- TSS, TD	S etc		7 days	SPOCAS	, pH Field	and FOX, CrS	;	24
urofins	mgt Di water batch number:			B15	ies	Aeta				pue											Ferrol	us iron			7 days	ASLP, TO	LP			7
-		1		50	5 10	Heavy Metal M8			clay	×													_						-	
	Sample ID	Date	Matrix	B7A	Asbe Suid	lea	잂	Ŧ	% 6	BTEX											Containe	-	1077	lat the	1	lane i i	-	1	Sample	comment
	EBH1	12/05/2022	Soil	X		┿╧┙	1	<u>u</u>	¢,		+-+		+		-	-		+	+		500P	250P	125P	60mi plasti	s 40mL vial	200ml glass	Jar X	Zip lock bag		
2	EBH2	12/05/2022	Soil	X		1															1-						X	X	-0	ieved for
3	EBH3	12/05/2022	Soil	X	X													+			1	-	-		-	-	X	X		ieved for
4	EBH4	12/05/2022	Soil	X	X							-			-						1	-				-	X	X	-	ieved for
5	EBH5	12/05/2022	Soil	X	X		X	X	X												1		1				X	X		ieved for
6	EBH6	12/05/2022	Soil	X	X																						X	X	7mm s	ieved for
7	EBH7	12/05/2022	Soil	X											1											1	X	X	7mm s	ieved for
8	E8H8	12/05/2022	Soil	X																							X	X	7mm si	ieved to
9	EBN9	12/05/2022	Soil	X		+	$ \downarrow \downarrow$	_	_			_									1						X	X	7mm si	ieved for
10	EBH10	12/05/2022	Soil	X				_	_			_			-						1						X	X	7mm s	ieved for
11	EBH11	12/05/2022	Soil	X		-			-	_		_		_	-			_	\downarrow								X	X	7mm s	leved for
12	EBH12	12/05/2022	Soil	X	X	+-	\vdash	-	-	-	+ +	-	+ +	_	-			1			-						X	X	7mm s	ieved for
13	BD1	12/05/2022	Soil Soil	+	-	X	+	-	-+	-	++		+	-	+	-		-				-					X			
_	TripSpike and Trip Blank	12/05/2022	QAQC	+	-		+	-	-	x	+		+	-	+				+		-						X			
16	проржеало пр валк	12/03/2022	WAQU	+	-	+		-	-+	^	++		+		+	+ +		-	+ +		+	-							2 x QA	QC vials
17				+	+	+		-	-+	-	++		+	-	-	+		-	+		-					-				
18			-	+		+			+			-	+	-	+	+		-	+		-	-								
19		1		t		+-+			+	-	++	-	+	+	+	+ +		+	+	-	1						<u> </u>		<u> </u>	
20						1							+					+	+											
21																														
22																														
23																		1												
24																														
25																														
				_		Lab	orato	ry Staf	ff						Tu	im arou	und tim	e						Metho	d Of Shipmer	nt			Temperature o	on arriva
elinqui	shed By: Victor Kirp	pichnikov	Receiv	red By	y:																						_	0		
			_									1 04	Y 🗖	2 0	AV		3 DAY				1 Con	Irier								
ate & T	ime:: 13/05/22		Date &	Time	:							7'"	. –	1 20	-11		UA T					nd Delivere	ed .						Report numbe	ar:
				_								5.04	Y 🗸	10	DAY						Pos	tal								
Signatur	b:		Signat	ure:								To DA		14	we f	-					Courier	Consignn	nent#:						8890	035
			_																										007	
				_			_		_	_			_		_	_	_	_	_	_									h	

QS3009_R1 Issue Date: 22 August 2013 Page 1 of 1

Geotesta Pty Ltd (NSW) Unit 6, 20/22 Foundry Road Seven Hills NSW 2147

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention:

Victor Kirpichnikov (GEOTESTA)

Report
Project name
Project ID
Received Date

889035-S LOT 7 DP223428 NARROMINE ROAD NE1295 May 13, 2022

Client Sample ID			EBH1	EBH2	EBH3	EBH4
Sample Matrix			Soil	Soil	Soil	Soil
			S22-	S22-	S22-	S22-
Eurofins Sample No.			My0038531	My0038532	My0038533	My0038534
Date Sampled			May 12, 2022	May 12, 2022	May 12, 2022	May 12, 2022
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	105	89	85	99
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

Client Sample ID			EBH1	EBH2	EBH3	EBH4
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S22- My0038531	S22- My0038532	S22- My0038533	S22- My0038534
Date Sampled			May 12, 2022	May 12, 2022	May 12, 2022	May 12, 2022
Test/Reference	LOR	Unit	1110y 12, 2022	111ay 12, 2022	1110 12, 2022	1111 J 12, 2022
Polycyclic Aromatic Hydrocarbons	LOK	Unit				
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	92	67	93	89
p-Terphenyl-d14 (surr.)	1	%	100	105	95	87
Organochlorine Pesticides		/0	100	100		
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
a-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-HCH (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Toxaphene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	68	79	78	75
Tetrachloro-m-xylene (surr.)	1	%	78	82	76	73
Organophosphorus Pesticides						
Azinphos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Bolstar	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorfenvinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorpyrifos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Coumaphos	2	mg/kg	< 2	< 2	< 2	< 2
Demeton-S	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Demeton-O	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Diazinon	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dichlorvos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dimethoate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2

		EBH1	EBH2	EBH3	EBH4
		1		_	Soil
		S22-	S22-	S22-	S22- My0038534
			-		May 12, 2022
IOP	Linit	,	,	,	,,
LOIN	Onit				
0.2	ma/ka	- 0.2	< 0.2	< 0.2	< 0.2
					< 0.2
					< 0.2
					< 0.2
					< 0.2
					< 0.2
					< 0.2
					< 0.2
					< 0.2
					< 0.2
					< 0.2
					< 0.2
					< 0.2
					< 0.2
					< 2
					< 0.2
					< 0.2
					< 0.2
					< 0.2
					< 0.2
					< 0.2
					< 0.2
					< 0.2
					94
1	70	115	33	33	54
0.1	mallea	:01	.01	.01	< 0.1
					< 0.1
					< 0.1
					< 0.1
					< 0.1
					< 0.1
					< 0.1
					75
					73
<u> </u>	70	10	02	10	13
0.5	malka	< 0.5	< 0 F	< 0.5	< 0.5
					< 0.5
					<1
					< 0.5
					<1
1 1				< 1	< 1 < 10
10	mg/kg	< 10	< 10		
	LOR 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	0.2 mg/kg 0.1 mg/kg 0.1 mg/kg 0.1 mg/kg 0.1 mg/kg 0.1 mg/kg 0.1 <td>My0038531 May 12, 2022 LOR Unit 0.2 mg/kg < 0.2</td> 0.2 mg/kg < 0.2	My0038531 May 12, 2022 LOR Unit 0.2 mg/kg < 0.2	S22- My0038531 May 12, 2022 S22- My0038532 May 12, 2022 LOR Unit	S22- My0038531 May 12, 2022 S22- My0038533 May 12, 2022 S22- My0038533 May 12, 2022 LOR Unit

Client Sample ID			EBH1	EBH2	EBH3	EBH4
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S22- My0038531	S22- My0038532	S22- My0038533	S22- My0038534
Date Sampled			May 12, 2022	May 12, 2022	May 12, 2022	May 12, 2022
Test/Reference	LOR	Unit				
Phenols (non-Halogenated)						
2-Cyclohexyl-4.6-dinitrophenol	20	mg/kg	< 20	< 20	< 20	< 20
2-Methyl-4.6-dinitrophenol	5	mg/kg	< 5	< 5	< 5	< 5
2-Nitrophenol	1	mg/kg	< 1	< 1	< 1	< 1
2.4-Dimethylphenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4-Dinitrophenol	5	mg/kg	< 5	< 5	< 5	< 5
2-Methylphenol (o-Cresol)	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
3&4-Methylphenol (m&p-Cresol)	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Total cresols*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
4-Nitrophenol	5	mg/kg	< 5	< 5	< 5	< 5
Dinoseb	20	mg/kg	< 20	< 20	< 20	< 20
Phenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenol-d6 (surr.)	1	%	97	87	83	94
Total Non-Halogenated Phenol*	20	mg/kg	< 20	< 20	< 20	< 20
Heavy Metals						
Arsenic	2	mg/kg	3.3	3.3	2.1	2.8
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	140	140	37	80
Copper	5	mg/kg	35	53	12	24
Lead	5	mg/kg	< 5	< 5	7.1	7.8
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	130	180	23	60
Zinc	5	mg/kg	52	70	19	34
% Moisture	1	%	19	20	16	25

Client Sample ID			EBH5	EBH6	EBH7	EBH8
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S22- My0038535	S22- My0038536	S22- My0038537	S22- My0038538
Date Sampled			May 12, 2022	May 12, 2022	May 12, 2022	May 12, 2022
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100

Client Sample ID			EBH5	EBH6	EBH7	EBH8
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S22- My0038535	S22- My0038536	S22- My0038537	S22- My0038538
Date Sampled			May 12, 2022	May 12, 2022	May 12, 2022	May 12, 2022
Test/Reference	LOR	Unit		, <u></u>	, <u></u>	
BTEX	LOIN	Onit				
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.1	mg/kg	< 0.1	< 0.2	< 0.2	< 0.2
o-Xylene	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1		98	93	94	90
Polycyclic Aromatic Hydrocarbons		70	50			
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (integratin bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphinylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	89	88	92	96
p-Terphenyl-d14 (surr.)	1	%	90	87	102	107
Organochlorine Pesticides	· ·	70			102	
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
a-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-HCH (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05

Client Sample ID			EBH5	EBH6	EBH7	EBH8
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S22- My0038535	S22- My0038536	S22- My0038537	S22- My0038538
Date Sampled			May 12, 2022	May 12, 2022	May 12, 2022	May 12, 2022
Test/Reference	LOR	Unit				
Organochlorine Pesticides	LOIX	Onit				
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Toxaphene	0.00	mg/kg	< 0.05	< 0.5	< 0.5	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.05	mg/kg	< 0.03	< 0.03	< 0.1	< 0.03
Vic EPA IWRG 621 OCP (Total)*	0.1		< 0.1	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	mg/kg %	67	69	122	123
Tetrachloro-m-xylene (surr.)	1	%	74	72	134	123
Organophosphorus Pesticides		70	/4	12	134	130
	0.0		.00		. 0.0	
Azinphos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Bolstar	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorfenvinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorpyrifos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Coumaphos	2	mg/kg	< 2	< 2	< 2	< 2
Demeton-S	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Demeton-O	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Diazinon	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dichlorvos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dimethoate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Disulfoton	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
EPN	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethoprop	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenitrothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fensulfothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Malathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Merphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Methyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Mevinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Monocrotophos	2	mg/kg	< 2	< 2	< 2	< 2
Naled	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Omethoate	2	mg/kg	< 2	< 2	< 2	< 2
Phorate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Pirimiphos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Pyrazophos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ronnel	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Terbufos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Tetrachlorvinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Tokuthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Trichloronate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Triphenylphosphate (surr.)	1	%	78	86	100	92

Client Sample ID			EBH5	EBH6	EBH7	EBH8
Sample Matrix			Soil	Soil	Soil	Soil
•			S22-	S22-	S22-	S22-
Eurofins Sample No.			My0038535	My0038536	My0038537	My0038538
Date Sampled			May 12, 2022	May 12, 2022	May 12, 2022	May 12, 2022
Test/Reference	LOR	Unit				
Polychlorinated Biphenyls						
Aroclor-1016	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1221	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1232	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1242	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1248	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1254	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1260	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Total PCB*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	67	69	122	123
Tetrachloro-m-xylene (surr.)	1	%	74	72	134	136
Phenols (Halogenated)	•	•				
2-Chlorophenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4-Dichlorophenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4.5-Trichlorophenol	1	mg/kg	< 1	< 1	< 1	< 1
2.4.6-Trichlorophenol	1	mg/kg	<1	< 1	< 1	< 1
2.6-Dichlorophenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
4-Chloro-3-methylphenol	1	mg/kg	< 1	< 1	< 1	< 1
· ·	1		<1	< 1	< 1	
Pentachlorophenol		mg/kg				< 1
Tetrachlorophenols - Total	10	mg/kg	< 10	< 10	< 10	< 10
Total Halogenated Phenol*	1	mg/kg	< 1	< 1	< 1	< 1
Phenols (non-Halogenated)						
2-Cyclohexyl-4.6-dinitrophenol	20	mg/kg	< 20	< 20	< 20	< 20
2-Methyl-4.6-dinitrophenol	5	mg/kg	< 5	< 5	< 5	< 5
2-Nitrophenol	1	mg/kg	< 1	< 1	< 1	< 1
2.4-Dimethylphenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4-Dinitrophenol	5	mg/kg	< 5	< 5	< 5	< 5
2-Methylphenol (o-Cresol)	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
3&4-Methylphenol (m&p-Cresol)	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Total cresols*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
4-Nitrophenol	5	mg/kg	< 5	< 5	< 5	< 5
Dinoseb	20	mg/kg	< 20	< 20	< 20	< 20
Phenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenol-d6 (surr.)	1	%	89	92	146	130
Total Non-Halogenated Phenol*	20	mg/kg	< 20	< 20	< 20	< 20
Heavy Metals						
Arsenic	2	mg/kg	2.6	2.5	3.3	4.8
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	82	250	60	110
Copper	5	mg/kg	19	44	13	31
Lead	5	mg/kg	7.4	5.0	6.8	9.3
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	52	230	52	77
Zinc	5	mg/kg	26	52	34	41
	Ŭ		20			1
% Moisture	1	%	17	22	16	22
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	< 10	-	-	
pH (1:5 Aqueous extract at 25°C as rec.)				-	-	-
	0.1	pH Units	7.0	-	-	-
Cation Exchange Capacity						

Client Sample ID			EBH9	EBH10	EBH11	EBH12
Sample Matrix			Soil	Soil	Soil	Soil
- Frankfing Operation No.			S22-	S22-	S22-	S22-
Eurofins Sample No.			My0038539	My0038540	My0038541	My0038542
Date Sampled			May 12, 2022	May 12, 2022	May 12, 2022	May 12, 2022
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons		1				
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34 TRH >C34-C40	100	mg/kg mg/kg	< 100 < 100	< 100	< 100 < 100	< 100 < 100
TRH >C34-C40 TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100 < 100	< 100	< 100
BTEX	100	пц/кд	< 100	< 100	< 100	< 100
Benzene	0.1	malka	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene m&p-Xylenes	0.1	mg/kg mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
o-Xylene	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Xylenes - Total*	0.1	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1		137	68	64	67
Polycyclic Aromatic Hydrocarbons		70	107			01
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	88	85	95	83
p-Terphenyl-d14 (surr.)	1	%	92	86	107	97
Organochlorine Pesticides			ļ			
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05

Client Sample ID			EBH9	EBH10	EBH11	EBH12
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S22- My0038539	S22- My0038540	S22- My0038541	S22- My0038542
Date Sampled			May 12, 2022	May 12, 2022	May 12, 2022	May 12, 2022
Test/Reference	LOR	Unit		, <u></u>		
Organochlorine Pesticides	LOK	Unit				
a-HCH	0.05	malka	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-HCH (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Toxaphene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	101	106	108	94
Tetrachloro-m-xylene (surr.)	1	%	121	117	131	122
Organophosphorus Pesticides	ł					
Azinphos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Bolstar	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorfenvinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorpyrifos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Coumaphos	2	mg/kg	< 2	< 2	< 2	< 2
Demeton-S	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Demeton-O	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Diazinon	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dichlorvos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dimethoate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Disulfoton	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
EPN	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethoprop	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenitrothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fensulfothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Malathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Merphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Methyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Mevinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Monocrotophos	2	mg/kg	< 2	< 2	< 2	< 2
Naled	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2

Client Sample ID			EBH9	EBH10	EBH11	EBH12
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S22- My0038539	S22- My0038540	S22- My0038541	S22- My0038542
Date Sampled			May 12, 2022	May 12, 2022	May 12, 2022	May 12, 2022
Test/Reference	LOR	Unit				
Organophosphorus Pesticides		1				
Omethoate	2	mg/kg	< 2	< 2	< 2	< 2
Phorate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Pirimiphos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Pyrazophos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ronnel	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Terbufos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Tetrachlorvinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Tokuthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Trichloronate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Triphenylphosphate (surr.)	1	%	93	97	73	70
Polychlorinated Biphenyls	i	,,,				
Aroclor-1016	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1221	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1232	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1242	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1248	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1254	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1260	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Total PCB*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	101	106	108	94
Tetrachloro-m-xylene (surr.)	1	%	121	117	131	122
Phenois (Halogenated)		70	121			122
2-Chlorophenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4-Dichlorophenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4-Dichlorophenol	1	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4.6-Trichlorophenol	1	mg/kg	<1	< 1	< 1	<1
2.6-Dichlorophenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
4-Chloro-3-methylphenol	0.5	mg/kg	< 1	< 1	< 1	< 1
Pentachlorophenol	1	mg/kg	<1	< 1	< 1	<1
Tetrachlorophenols - Total	10	mg/kg	< 10	< 10	< 10	< 10
Total Halogenated Phenol*	1	mg/kg	< 1	< 1	<1	<1
Phenois (non-Halogenated)	I	IIIg/Kg				
	20	ma/ka	1 20	< 20	< 20	× 20
2-Cyclohexyl-4.6-dinitrophenol 2-Methyl-4.6-dinitrophenol	20	mg/kg	< 20	< 20	< 20	< 20
2-Methyl-4.o-dinitrophenol 2-Nitrophenol	5	mg/kg	< 5 < 1	< 5	< 1	< 5
•		mg/kg				
2.4-Dimethylphenol 2.4-Dinitrophenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
	5	mg/kg	< 5	< 5	< 5	< 5
2-Methylphenol (o-Cresol)	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
3&4-Methylphenol (m&p-Cresol)	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Total cresols*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
4-Nitrophenol	5	mg/kg	< 5	< 5	< 5	< 5
Dinoseb	20	mg/kg	< 20	< 20	< 20	< 20
Phenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenol-d6 (surr.) Total Non-Halogenated Phenol*	<u> </u>	% mg/kg	135 < 20	113 < 20	126 < 20	<u>110</u> < 20

Client Sample ID			EBH9	EBH10	EBH11	EBH12
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S22- My0038539	S22- My0038540	S22- My0038541	S22- My0038542
Date Sampled			May 12, 2022	May 12, 2022	May 12, 2022	May 12, 2022
Test/Reference	LOR	Unit				
Heavy Metals						
Arsenic	2	mg/kg	2.8	6.1	2.3	2.7
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	78	64	110	130
Copper	5	mg/kg	16	16	32	30
Lead	5	mg/kg	7.1	8.0	7.6	6.3
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	55	49	98	96
Zinc	5	mg/kg	29	35	50	39
% Moisture	1	%	23	17	21	19

Client Sample ID			BD1	EIL	TRIP SPIKE	TRIP BLANK
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S22- My0038543	S22- My0038544	S22- My0038545	S22- My0038546
Date Sampled			May 12, 2022	May 12, 2022	May 12, 2022	May 12, 2022
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	-	-	-	< 20
Naphthalene ^{N02}	0.5	mg/kg	-	-	-	< 0.5
TRH C6-C10	20	mg/kg	-	-	-	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	-	-	-	< 20
BTEX						
Benzene	0.1	mg/kg	-	-	-	< 0.1
Toluene	0.1	mg/kg	-	-	-	< 0.1
Ethylbenzene	0.1	mg/kg	-	-	-	< 0.1
m&p-Xylenes	0.2	mg/kg	-	-	-	< 0.2
o-Xylene	0.1	mg/kg	-	-	-	< 0.1
Xylenes - Total*	0.3	mg/kg	-	-	-	< 0.3
4-Bromofluorobenzene (surr.)	1	%	-	-	-	96
Heavy Metals						
Arsenic	2	mg/kg	3.5	< 2	-	-
Cadmium	0.4	mg/kg	< 0.4	< 0.4	-	-
Chromium	5	mg/kg	100	38	-	-
Copper	5	mg/kg	20	5.7	-	-
Lead	5	mg/kg	5.5	< 5	-	-
Mercury	0.1	mg/kg	< 0.1	< 0.1	-	-
Nickel	5	mg/kg	67	11	-	-
Zinc	5	mg/kg	42	8.8	-	-
% Moisture	1	%	17	13	-	<u> </u>
TRH C6-C10	1	%	-	-	83	-
Total Recoverable Hydrocarbons						
Naphthalene	1	%	-	-	77	-
TRH C6-C9	1	%	-	-	82	-

Client Sample ID			BD1	EIL	TRIP SPIKE	TRIP BLANK
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S22- My0038543	S22- My0038544	S22- My0038545	S22- My0038546
Date Sampled			May 12, 2022	May 12, 2022	May 12, 2022	May 12, 2022
Test/Reference	LOR	Unit				
BTEX						
Benzene	1	%	-	-	84	-
Ethylbenzene	1	%	-	-	81	-
m&p-Xylenes	1	%	-	-	82	-
o-Xylene	1	%	-	-	83	-
Toluene	1	%	-	-	84	-
Xylenes - Total	1	%	-	-	82	-
4-Bromofluorobenzene (surr.)	1	%	-	-	77	-

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	May 20, 2022	14 Days
- Method: LTM-ORG-2010 TRH C6-C40		-	-
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	May 20, 2022	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons	Sydney	May 20, 2022	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	May 20, 2022	14 Days
- Method: LTM-ORG-2010 BTEX and Volatile TRH			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	May 20, 2022	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Sydney	May 20, 2022	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Phenols (Halogenated)	Sydney	May 20, 2022	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Phenols (non-Halogenated)	Sydney	May 20, 2022	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Metals M8	Sydney	May 20, 2022	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Eurofins Suite B15			
Organochlorine Pesticides	Sydney	May 20, 2022	14 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Organophosphorus Pesticides	Sydney	May 20, 2022	14 Days
- Method: LTM-ORG-2200 Organophosphorus Pesticides by GC-MS			
Polychlorinated Biphenyls	Sydney	May 20, 2022	28 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
% Moisture	Sydney	May 17, 2022	14 Days
- Method: LTM-GEN-7080 Moisture			
Conductivity (1:5 aqueous extract at 25°C as rec.)	Sydney	May 20, 2022	7 Days
- Method: LTM-INO-4030 Conductivity			
Cation Exchange Capacity	Melbourne	May 20, 2022	28 Days
- Method: LTM-MET-3060 Cation Exchange Capacity by bases & Exchangeable Sodium Percentage			
pH (1:5 Aqueous extract at 25°C as rec.)	Sydney	May 20, 2022	7 Days
- Method: LTM-GEN-7090 pH by ISE			

web: ww email: E Cor	eurofins.com.au nviroSales@eurofins npany Name: Iress:	.com Geotesta Pty	Ltd (NSW) Foundry Roa		Eurofins Environme ABN: 50 005 085 521 Melbourne 6 Monterey Road Dandenong South VIC 3 Phone : +61 3 8564 500 NATA # 1261 Site # 125	1 175 G 0 P	ydney 79 Mago Sirrawee hone : + IATA # 1 IATA # 1 R R	owar Ro n NSW 61 2 99	oad 2066 900 8400 e # 182 No.: #:	8 1/ M 0 Pl 17 N	urarrie hone : 4 ATA # 1 88903	allwood QLD 41 -61 7 39 261 Sit	72 02 4600 e # 2079	4 N) P 94 P	Newcastle Perth Auckland 4/52 Industrial Drive 46-48 Banksia Road 35 O'Rorke Road Mayfield East NSW 2304 Welshpool WA 6106 Penrose, Auckland PO Box 60 Wickham 2293 Phone : +61 8 6253 4444 NATA # 2377 Site # 2370 Phone : +64 9 526 NATA # 1261 Site # 25079 Received: May 13, 202: Due: May 20, 202: Priority: 5 Day		NZBN: 9429046024954 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: - t64 9 526 45 51 IANZ # 1327 May 13, 2022 4:00 May 20, 2022	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290
	Project Name: LOT 7 DP223428 NARROMINE ROAD Project ID: NE1295														Eurofins Analytica	l Services Manager :	: Asim Khan	
	Sample Detail					Asbestos - WA guidelines	pH (1:5 Aqueous extract at 25°C as rec.)	Metals M8	Eurofins Suite B15	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7A	BTEXN and Volatile TRH	BTEXN and Volatile TRH				
Melb	ourne Laborato	ory - NATA # 12	61 Site # 125	4							х							
		- NATA # 1261 3				X	X	Х	X	X	Х	X	Х	Х	4			
		y - NATA # 1261													4			
		/ - NATA # 1261													4			
		NATA # 2377 Sit	e # 2370												4			
	nal Laboratory		Comerting	Martin					<u> </u>						-			
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID													
1	EBH1	May 12, 2022		Soil	S22- My0038531	x			x	x		x						
2	EBH2	May 12, 2022		Soil	S22- My0038532	х			х	х		х						
3	EBH3	May 12, 2022		Soil	S22- My0038533	х			х	х		х						
4	EBH4	May 12, 2022		Soil	S22- My0038534	х			х	х		х						
5	EBH5	May 12, 2022		Soil	S22- My0038535	х	x		х	х	х	x						
6	EBH6	May 12, 2022		Soil	S22-	Х			Х	Х		Х						

web: w email:	eurofi www.eurofins.com.au EnviroSales@eurofins ompany Name: ddress:	s.com Geotesta Pty	ironment Tes y Ltd (NSW) 2 Foundry Road	iting	Eurofins Environme ABN: 50 005 085 521 Melbourne 6 Monterey Road Dandenong South VIC 3 Phone : +61 3 8564 500 NATA # 1261 Site # 125	5 1 3175 G 0 P	ydney 79 Mago iirrawee hone : + ATA # 1 ATA # 1	owar Ro n NSW -61 2 99	oad 2066 900 8400 e # 182 No.: #:	Bi 1/, M 0 Pi 17 N,	lurarrie hone : - ATA # ⁻ 38903	allwood QLD 4 ⁻ +61 7 39 1261 Sit	172 902 4600 e # 2079	1 0 1 94 1	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	Eurofins ARL Pty Ltd ABN: 91 05 0159 898 Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 6253 4444 NATA # 2377 Site # 2370 Received: Due: Priority:	Eurofins Environmer NZBN: 9429046024954 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327 May 13, 2022 4:00 May 20, 2022 5 Day	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290
	NSW 2147 Project Name: LOT 7 DP223428 NARROMINE ROAD Project ID: NE1295				Fax:									Contact Name: Eurofins Analytic	Victor Kirpichnikov (GEOTESTA)			
	Sample Detail Melbourne Laboratory - NATA # 1261 Site # 1254					Asbestos - WA guidelines	pH (1:5 Aqueous extract at 25°C as rec.)	Metals M8	Eurofins Suite B15	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7A	BTEXN and Volatile TRH	BTEXN and Volatile TRH				
Mell	bourne Laborate	ory - NATA # 12	261 Site # 1254								х							
Syd	ney Laboratory	- NATA # 1261	Site # 18217			Х	X	Х	х	Х	Х	х	х	х				
	bane Laborator											<u> </u>			_			
	field Laboratory					 									4			
	th Laboratory - I		te # 2370												_			
Exte	ernal Laboratory	/						<u> </u>							-			
7	EBH7	May 12, 2022	Soil		My0038536 S22- My0038537	x			x	x		x			-			
8	EBH8	May 12, 2022	Soil		S22- My0038538	x			x	x		x			1			
9	EBH9	May 12, 2022	Soil		S22- My0038539	x			х	х		x						
10	EBH10	May 12, 2022	Soil		S22- My0038540	x			x	х		x						
11	EBH11	May 12, 2022	Soil		S22- My0038541	x			х	х		x						
12	EBH12	May 12, 2022	Soil		S22- My0038542	х			x	х		х						

🔅 eurofi	nc I			os Environme 005 085 521	nt Te	sting A	Austra	lia Pty	Ltd						Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environmer NZBN: 9429046024954	nt Testing NZ Limited
web: www.eurofins.com.au email: EnviroSales@eurofir	Envi	Environment Testing		ne rey Road ong South VIC 3 +61 3 8564 5000 1261 Site # 1254	South VIC 3175 Girraween NSW 2066 3 8564 5000 Phone : +61 2 9900 8400		1/ M D Pł	Brisbane 1/21 Smallwood Place Murarie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794		4 N) F 94 F	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 6253 4444 NATA # 2377 Site # 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290			
Company Name: Address:	Unit 6, 20/22 Foundry Road Seven Hills NSW 2147					rder N eport none: ax:	#:		38903 13008		6			Received: Due: Priority: Contact Name:	May 13, 2022 4:00 May 20, 2022 5 Day Victor Kirpichnikov		
Project Name: Project ID:	LOT 7 DP22 NE1295	3428 NARROMINE	ROAD												Eurofins Analytic	: Asim Khan	
	Sa	mple Detail			Asbestos - WA guidelines	pH (1:5 Aqueous extract at 25°C as rec.)	Metals M8	Eurofins Suite B15	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7A	BTEXN and Volatile TRH	BTEXN and Volatile TRH				
Melbourne Laborat	ory - NATA # 12	61 Site # 1254								Х							
Sydney Laboratory					Х	х	Х	Х	Х	х	Х	Х	Х	4			
Brisbane Laborato														_			
Mayfield Laborator														_			
Perth Laboratory -		te # 2370					<u> </u>							4			
External Laborator														4			
13 BD1	May 12, 2022	Soil		038543			х		Х					_			
14 EIL	May 12, 2022	Soil		038544			х		х								
15 TRIP SPIKE	May 12, 2022	Soil		038545									х				
16 TRIP BLANK	May 12, 2022	Soil	S22 MyC	- 0038546								х					
Test Counts					12	1	2	12	14	1	12	1	1				

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

onito		
mg/kg: milligrams per kilogram	mg/L: milligrams per litre	µg/L: micrograms per litre
ppm: parts per million	ppb: parts per billion	%: Percentage
org/100 mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100 mL: Most Probable Number of organisms per 100 millilitres

Terms

APHA	American Public Health Association
COC	Chain of Custody
CP	Client Parent - QC was performed on samples pertaining to this report
CRM	Certified Reference Material (ISO17034) - reported as percent recovery.
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
LOR	Limit of Reporting.
LCS	Laboratory Control Sample - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
SRA	Sample Receipt Advice
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
твто	Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.
TCLP	Toxicity Characteristic Leaching Procedure
TEQ	Toxic Equivalency Quotient or Total Equivalence
QSM	US Department of Defense Quality Systems Manual Version 5.4
US EPA	United States Environmental Protection Agency
WA DWER	Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank			•		
Total Recoverable Hydrocarbons					
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank			•		
BTEX					
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xylenes - Total*	mg/kg	< 0.3	0.3	Pass	
Method Blank	mg/ Ng	4 0.0	0.0	1 400	
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene	mg/kg	< 0.5	0.5	Pass	
Total PAH*	mg/kg	< 0.5	0.5	N/A	
Method Blank	ilig/kg	-	0.5		
Organochlorine Pesticides					
	malka	- 0.1	0.1	Base	
Chlordanes - Total 4.4'-DDD	mg/kg	< 0.1 < 0.05	0.1	Pass Pass	
4.4-DDD 4.4'-DDE	mg/kg	< 0.05	0.05	Pass	
4.4-DDE 4.4'-DDT	mg/kg				
	mg/kg	< 0.05	0.05	Pass	
a-HCH	mg/kg	< 0.05 < 0.05	0.05	Pass	
Aldrin	mg/kg		0.05	Pass	
b-HCH	mg/kg	< 0.05	0.05	Pass	
d-HCH	mg/kg	< 0.05	0.05	Pass	
Dieldrin	mg/kg	< 0.05	0.05	Pass	
Endosulfan I	mg/kg	< 0.05	0.05	Pass	
Endosulfan II	mg/kg	< 0.05	0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	

Test	Units	Result 1	Acceptance Limits	e Pass Limits	Qualifying Code
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-HCH (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.05	0.05	Pass	
Toxaphene	mg/kg	< 0.5	0.5	Pass	
Method Blank					
Organophosphorus Pesticides					
Azinphos-methyl	mg/kg	< 0.2	0.2	Pass	
Bolstar	mg/kg	< 0.2	0.2	Pass	
Chlorfenvinphos	mg/kg	< 0.2	0.2	Pass	
Chlorpyrifos	mg/kg	< 0.2	0.2	Pass	
Chlorpyrifos-methyl	mg/kg	< 0.2	0.2	Pass	
Coumaphos	mg/kg	< 2	2	Pass	
Demeton-S	mg/kg	< 0.2	0.2	Pass	
Demeton-O	mg/kg	< 0.2	0.2	Pass	
Diazinon	mg/kg	< 0.2	0.2	Pass	
Dichlorvos	mg/kg	< 0.2	0.2	Pass	
Dimethoate	mg/kg	< 0.2	0.2	Pass	
Disulfoton	mg/kg	< 0.2	0.2	Pass	
EPN	mg/kg	< 0.2	0.2	Pass	
Ethion	mg/kg	< 0.2	0.2	Pass	
Ethoprop	mg/kg	< 0.2	0.2	Pass	
Ethyl parathion	mg/kg	< 0.2	0.2	Pass	
Fenitrothion	mg/kg	< 0.2	0.2	Pass	
Fensulfothion	mg/kg	< 0.2	0.2	Pass	
Fenthion	mg/kg	< 0.2	0.2	Pass	
Malathion	mg/kg	< 0.2	0.2	Pass	
Merphos	mg/kg	< 0.2	0.2	Pass	
Methyl parathion	mg/kg	< 0.2	0.2	Pass	
Mevinphos	mg/kg	< 0.2	0.2	Pass	
Monocrotophos	mg/kg	< 2	2	Pass	
Naled	mg/kg	< 0.2	0.2	Pass	
Omethoate	mg/kg	< 2	2	Pass	
Phorate	mg/kg	< 0.2	0.2	Pass	
Pirimiphos-methyl	mg/kg	< 0.2	0.2	Pass	
Pyrazophos	mg/kg	< 0.2	0.2	Pass	
Ronnel	mg/kg	< 0.2	0.2	Pass	
Terbufos	mg/kg	< 0.2	0.2	Pass	
Tetrachlorvinphos	mg/kg	< 0.2	0.2	Pass	
Tokuthion	mg/kg	< 0.2	0.2	Pass	
Trichloronate	mg/kg	< 0.2	0.2	Pass	
Method Blank					
Polychlorinated Biphenyls					
Aroclor-1016	mg/kg	< 0.1	0.1	Pass	
Aroclor-1221	mg/kg	< 0.1	0.1	Pass	
Aroclor-1232	mg/kg	< 0.1	0.1	Pass	
Aroclor-1242	mg/kg	< 0.1	0.1	Pass	
Aroclor-1248	mg/kg	< 0.1	0.1	Pass	
Aroclor-1254	mg/kg	< 0.1	0.1	Pass	
Aroclor-1260	mg/kg	< 0.1	0.1	Pass	

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Total PCB*	mg/kg	< 0.1		0.1	Pass	
Method Blank					•	
Phenols (Halogenated)						
2-Chlorophenol	mg/kg	< 0.5		0.5	Pass	
2.4-Dichlorophenol	mg/kg	< 0.5		0.5	Pass	
2.4.5-Trichlorophenol	mg/kg	< 1		1	Pass	
2.4.6-Trichlorophenol	mg/kg	< 1		1	Pass	
2.6-Dichlorophenol	mg/kg	< 0.5		0.5	Pass	
4-Chloro-3-methylphenol	mg/kg	< 1		1	Pass	
Pentachlorophenol	mg/kg	< 1		1	Pass	
Tetrachlorophenols - Total	mg/kg	< 10		10	Pass	
Method Blank					_	
Phenols (non-Halogenated)						
2-Cyclohexyl-4.6-dinitrophenol	mg/kg	< 20		20	Pass	
2-Methyl-4.6-dinitrophenol	mg/kg	< 5		5	Pass	
2-Nitrophenol	mg/kg	< 1		1	Pass	
2.4-Dimethylphenol	mg/kg	< 0.5		0.5	Pass	
2.4-Dinitrophenol	mg/kg	< 5		5	Pass	
2-Methylphenol (o-Cresol)	mg/kg	< 0.2		0.2	Pass	
3&4-Methylphenol (m&p-Cresol)	mg/kg	< 0.4		0.4	Pass	
4-Nitrophenol	mg/kg	< 5		5	Pass	
Dinoseb	mg/kg	< 20		20	Pass	
Phenol	mg/kg	< 0.5		0.5	Pass	
Total Non-Halogenated Phenol*	mg/kg	< 0		20	Pass	
Method Blank				-	-	
Heavy Metals						
Arsenic	mg/kg	< 2		2	Pass	
Cadmium	mg/kg	< 0.4		0.4	Pass	
Chromium	mg/kg	< 5		5	Pass	
Copper	mg/kg	< 5		5	Pass	
Lead	mg/kg	< 5		5	Pass	
Mercury	mg/kg	< 0.1		0.1	Pass	
Nickel	mg/kg	< 5		5	Pass	
Zinc	mg/kg	< 5		5	Pass	
Method Blank				-	-	
Conductivity (1:5 aqueous extract at 25°C as rec.)	uS/cm	< 10		10	Pass	
Method Blank				-	-	
Cation Exchange Capacity						
Cation Exchange Capacity	meq/100g	< 0.05		0.05	Pass	
LCS - % Recovery					-	
Total Recoverable Hydrocarbons						
TRH C6-C9	%	77		70-130	Pass	
TRH C10-C14	%	85		70-130	Pass	
Naphthalene	%	97		70-130	Pass	
TRH C6-C10	%	76		70-130	Pass	
TRH >C10-C16	%	84		70-130	Pass	
LCS - % Recovery			1	1	i	
BTEX						
Benzene	%	103		70-130	Pass	
Toluene	%	107		70-130	Pass	
Ethylbenzene	%	99		70-130	Pass	
m&p-Xylenes	%	100		70-130	Pass	
o-Xylene	%	101		70-130	Pass	
Xylenes - Total*	%	100		70-130	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
LCS - % Recovery	I	II		Linito	
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	92	70-130	Pass	
Acenaphthylene	%	94	70-130	Pass	
Anthracene	%	77	70-130	Pass	
Benz(a)anthracene	%	76	70-130	Pass	
Benzo(a)pyrene	%	87	70-130	Pass	
Benzo(b&j)fluoranthene	%	76	70-130	Pass	
Benzo(g.h.i)perylene	%	75	70-130	Pass	
Benzo(k)fluoranthene	%	107	70-130	Pass	
Chrysene	%	80	70-130	Pass	
Dibenz(a.h)anthracene	%	98	70-130	Pass	
Fluoranthene	%	81	70-130	Pass	
Fluorene	%	91	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	93	70-130	Pass	
Naphthalene	%	85	70-130	Pass	
Phenanthrene	%	89	70-130	Pass	
Pyrene	%	78	70-130	Pass	
CS - % Recovery					
Organochlorine Pesticides					
Chlordanes - Total	%	105	70-130	Pass	
4.4'-DDD	%	86	70-130	Pass	
4.4'-DDE	%	84	70-130	Pass	
4.4'-DDT	%	73	70-130	Pass	
a-HCH	%	96	70-130	Pass	
Aldrin	%	97	70-130	Pass	
b-HCH	%	87	70-130	Pass	
d-HCH	%	87	70-130	Pass	
Dieldrin	%	96	70-130	Pass	
Endosulfan I	%	84	70-130	Pass	
Endosulfan II	%	101	70-130	Pass	
Endosulfan sulphate	%	100	70-130	Pass	
Endrin	%	115	70-130	Pass	
Endrin aldehyde	%	118	70-130	Pass	
Endrin ketone	%	84	70-130	Pass	
g-HCH (Lindane)	%	90	70-130	Pass	
Heptachlor	%	114	70-130	Pass	
Heptachlor epoxide	%	116	70-130	Pass	
Hexachlorobenzene	%	99	70-130	Pass	
Methoxychlor	%	83	70-130	Pass	
CS - % Recovery					
Organophosphorus Pesticides					
Diazinon	%	117	70-130	Pass	
Dimethoate	%	82	70-130	Pass	
Ethion	%	127	70-130	Pass	
Fenitrothion	%	124	70-130	Pass	
Methyl parathion	%	119	70-130	Pass	
Mevinphos	%	76	70-130	Pass	
_CS - % Recovery					
Polychlorinated Biphenyls					
Aroclor-1016	%	92	70-130	Pass	
Aroclor-1260	%	97	70-130	Pass	
-CS - % Recovery					

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
2-Chlorophenol			%	89		25-140	Pass	
2.4-Dichlorophenol			%	85		25-140	Pass	
2.4.5-Trichlorophenol			%	70		25-140	Pass	
2.4.6-Trichlorophenol			%	86		25-140	Pass	
2.6-Dichlorophenol			%	87		25-140	Pass	
4-Chloro-3-methylphenol			%	94		25-140	Pass	
Pentachlorophenol			%	89		25-140	Pass	
Tetrachlorophenols - Total			%	83		25-140	Pass	
LCS - % Recovery							•	
Phenols (non-Halogenated)								
2-Methyl-4.6-dinitrophenol			%	75		25-140	Pass	
2-Nitrophenol			%	85		25-140	Pass	
2.4-Dimethylphenol			%	91		25-140	Pass	
2-Methylphenol (o-Cresol)			%	92		25-140	Pass	
3&4-Methylphenol (m&p-Cresol)			%	94		25-140	Pass	
4-Nitrophenol			%	80		25-140	Pass	
Dinoseb			%	73		25-140	Pass	
Phenol			%	70		25-140	Pass	
LCS - % Recovery			/0	10		20 140	1 435	
Heavy Metals Arsenic			%	81		80-120	Pass	
Cadmium			%	90		80-120	Pass	
Chromium			%	96		80-120	Pass	
Copper			%	102		80-120	Pass	
Lead			%	87		80-120	Pass	
Mercury			%	101		80-120	Pass	
Nickel			%	100		80-120	Pass	
Zinc			%	100		80-120	Pass	
LCS - % Recovery	_			1	1	[_	
Conductivity (1:5 aqueous extract a	it 25°C as rec.)		%	99		70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery					1 1	F		
Total Recoverable Hydrocarbons	1			Result 1				
TRH C6-C9	S22-My0031974	NCP	%	70		70-130	Pass	
TRH C10-C14	S22-My0029530	NCP	%	87		70-130	Pass	
Naphthalene	S22-My0031974	NCP	%	113		70-130	Pass	
TRH C6-C10	S22-My0036868	NCP	%	70		70-130	Pass	
TRH >C10-C16	S22-My0029530	NCP	%	87		70-130	Pass	
Spike - % Recovery								
втех				Result 1				
Benzene	S22-My0031974	NCP	%	98		70-130	Pass	
Toluene	S22-My0036868	NCP	%	97		70-130	Pass	
Ethylbenzene	S22-My0031974	NCP	%	90		70-130	Pass	
m&p-Xylenes	S22-My0031974	NCP	%	96		70-130	Pass	
o-Xylene	S22-My0031974	NCP	%	100		70-130	Pass	
Xylenes - Total*	S22-My0031974	NCP	%	97		70-130	Pass	
Spike - % Recovery					· · · · · ·			
Polycyclic Aromatic Hydrocarbon	S			Result 1				
Acenaphthene	S21-No14133	NCP	%	85		70-130	Pass	
Pyrene	S21-No14133	NCP	%	86		70-130	Pass	
	021-11014133	NOF	70	00		10-100	1 435	
Spike - % Recovery								
Spike - % Recovery				Result 1				
Organochlorine Pesticides	S21 No14422	NCD	0/	Result 1		70.420	Deee	
	S21-No14133 S21-No14133	NCP NCP	%	Result 1 71 76		70-130 70-130	Pass Pass	

Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
4.4'-DDE	S21-No14133	NCP	%	76		70-130	Pass	
4.4'-DDT	S21-No14147	NCP	%	76		70-130	Pass	
a-HCH	S21-No14133	NCP	%	72		70-130	Pass	
Aldrin	S21-No14133	NCP	%	76		70-130	Pass	
b-HCH	S21-No14133	NCP	%	71		70-130	Pass	
d-HCH	S21-No14133	NCP	%	72		70-130	Pass	
Dieldrin	S21-No14133	NCP	%	72		70-130	Pass	
Endosulfan I	S21-No14133	NCP	%	72		70-130	Pass	
Endosulfan II	S21-No14133	NCP	%	78		70-130	Pass	
Endosulfan sulphate	S21-No14147	NCP	%	75		70-130	Pass	
Endrin	S21-No14133	NCP	%	73		70-130	Pass	
Endrin ketone	S21-No14147	NCP	%	73		70-130	Pass	
g-HCH (Lindane)	S21-No14133	NCP	%	75		70-130	Pass	
Heptachlor	S21-No14133	NCP	%	77		70-130	Pass	
Heptachlor epoxide	S21-No14133	NCP	%	70		70-130	Pass	
Hexachlorobenzene	S21-No14133	NCP	%	76		70-130	Pass	
Methoxychlor	S21-No14133	NCP	%	83		70-130	Pass	
Spike - % Recovery								
Organophosphorus Pesticides				Result 1				
Diazinon	S21-No14133	NCP	%	108		70-130	Pass	
Dimethoate	S21-No14133	NCP	%	108		70-130	Pass	
Ethion	S21-No14133	NCP	%	130		70-130	Pass	
Fenitrothion	S21-No14133	NCP	%	118		70-130	Pass	
Mevinphos	S21-No14133	NCP	%	120		70-130	Pass	
Spike - % Recovery			,.					
Heavy Metals				Result 1				
Chromium	S22-My0014481	NCP	%	111		75-125	Pass	
Copper	S22-My0047608	NCP	%	93		75-125	Pass	
Zinc	S22-My0014481	NCP	%	108		75-125	Pass	
Spike - % Recovery	022 My0014401		/0	100		10 120	1 455	
Polycyclic Aromatic Hydrocarb	ons			Result 1				
Acenaphthylene	S22-My0041423	NCP	%	101		70-130	Pass	
Anthracene	S22-My0041423	NCP	%	91		70-130	Pass	
Benz(a)anthracene	S22-My0041422	NCP	%	105		70-130	Pass	
Benzo(a)pyrene	S22-My0041422	NCP	%	115		70-130	Pass	
Benzo(b&j)fluoranthene	S22-My0041422	NCP	%	108		70-130	Pass	
Benzo(g.h.i)perylene	S22-My0041422	NCP	%	119		70-130	Pass	
Benzo(k)fluoranthene	S22-My0041422	NCP	%	92		70-130	Pass	
Chrysene	S22-My0041423	NCP	%	70		70-130	Pass	
Dibenz(a.h)anthracene	S22-My0041423	NCP	%	70		70-130	Pass	
Fluoranthene	S22-My0041422	NCP	%	98		70-130	Pass	
Fluorene	S22-My0041423	NCP	%	87	├───┼	70-130	Pass	
Indeno(1.2.3-cd)pyrene	S22-My0041422	NCP	%	118		70-130	Pass	
Naphthalene	S22-My0041423	NCP	%	90	+	70-130	Pass	
Phenanthrene	S22-My0041423	NCP	%	91		70-130	Pass	
Spike - % Recovery				D 114				
Phenols (Halogenated)	000 14 000 14	NOT	~ /	Result 1	<u>├───</u>	00.400		
2-Chlorophenol	S22-My0035430	NCP	%	83	<u>├───</u>	30-130	Pass	
2.4.6-Trichlorophenol	S22-My0035430	NCP	%	92	├	30-130	Pass	
2.6-Dichlorophenol	S22-My0035430	NCP	%	74	├ ──┤	30-130	Pass	
4-Chloro-3-methylphenol	S22-My0035430	NCP	%	71		30-130	Pass	
Spike - % Recovery								
Phenols (non-Halogenated)		,		Result 1	├ ───┤			
2-Nitrophenol	S22-My0035430	NCP	%	72		30-130	Pass	1

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
2.4-Dimethylphenol	S22-My0035430	NCP	%	84			30-130	Pass	
2-Methylphenol (o-Cresol)	S22-My0035430	NCP	%	80			30-130	Pass	
3&4-Methylphenol (m&p-Cresol)	S22-My0035430	NCP	%	79			30-130	Pass	
Phenol	S22-My0035430	NCP	%	92			30-130	Pass	
Spike - % Recovery									
Heavy Metals				Result 1					
Arsenic	S22-My0038538	CP	%	88			75-125	Pass	
Cadmium	S22-My0038538	CP	%	100			75-125	Pass	
Lead	S22-My0038538	CP	%	97			75-125	Pass	
Mercury	S22-My0038538	CP	%	111			75-125	Pass	
Nickel	S22-My0038538	CP	%	89			75-125	Pass	
Spike - % Recovery							•	•	
Organochlorine Pesticides				Result 1					
Endrin aldehyde	S22-My0041423	NCP	%	82			70-130	Pass	
Spike - % Recovery					1		1		
Organophosphorus Pesticides				Result 1					
Methyl parathion	S22-My0041423	NCP	%	80			70-130	Pass	
Spike - % Recovery		1101	/0					1 400	
Polychlorinated Biphenyls				Result 1					
Aroclor-1016	S22-Mv0041423	NCP	%	93			70-130	Pass	
Aroclor-1260	S22-My0041423	NCP	%	100			70-130	Pass	
A10001-1200			/0	100			-	Pass	Qualifying
Test	Lab Sample ID	Source	Units	Result 1			Acceptance Limits	Limits	Code
Duplicate								•	
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD			
TRH C6-C9	S22-My0031993	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	S22-My0037633	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S22-My0037633	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S22-My0037633	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
Naphthalene	S22-My0031993	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S22-My0031993	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	S22-My0037633	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S22-My0037633	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S22-My0037633	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate	022 My0007000		iiig/kg		100		0070	1 455	
BTEX				Result 1	Result 2	RPD	1		
Benzene	S22-My0031993	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
	S22-My0031993	NCP				<1	30%		
Toluene	S22-My0031993	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	,	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S22-My0031993 S22-My0031993	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	,		mg/kg	< 0.1	< 0.1			Pass	
Xylenes - Total*	S22-My0031993	NCP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate				Pooult 4	Recult 2	חחם			
Polycyclic Aromatic Hydrocarbons		NCD	maller	Result 1	Result 2	RPD	200/	Dese	
Acenaphthene	S21-No14141	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S21-No14141	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S21-No14141	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S21-No14141	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S21-No14141	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S21-No14141	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S21-No14141	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S21-No14141	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S21-No14141	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S21-No14141	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S21-No14141	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	

Duplicate									
Polycyclic Aromatic Hydrocarbons	3			Result 1	Result 2	RPD			
Fluorene	S21-No14141	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S21-No14141	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S21-No14141	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S21-No14141	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S21-No14141	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate	0211014141		iiig/itg	< 0.0	< 0.0	<u></u>	0070	1 455	
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	S21-No14141	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S21-No14141	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S21-No14141	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S21-No14141	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-HCH	S21-No14141	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S21-No14141	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-HCH	S21-No14141	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-HCH	S21-No14141	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S21-No14141	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S21-No14141 S21-No14141	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S21-No14141 S21-No14141	NCP		< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S21-No14141 S21-No14141	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosuiran suipnate	S21-N014141 S21-N014141	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
		NCP	mg/kg				30%	1 1	
Endrin aldehyde	S21-No14141		mg/kg	< 0.05	< 0.05	<1		Pass	
Endrin ketone	S21-No14141	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-HCH (Lindane)	S21-No14141	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S21-No14141	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S21-No14141	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S21-No14141	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S21-No14141	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Toxaphene	S21-No14141	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate				Desided	Destrict				
Organophosphorus Pesticides	S21 No14141	NCP	malka	Result 1	Result 2	RPD	20%	Pass	
Azinphos-methyl Bolstar	S21-No14141	NCP	mg/kg	< 0.2	< 0.2	<1	30% 30%		
	S21-No14141		mg/kg	< 0.2	< 0.2	<1		Pass	
Chlorfenvinphos	S21-No14141	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos	S21-No14141	NCP NCP	mg/kg	< 0.2	< 0.2	<1	30% 30%	Pass	
Chlorpyrifos-methyl	S21-No14141	-	mg/kg	< 0.2	< 0.2	<1		Pass	
Coumaphos	S21-No14141	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Demeton-S	S21-No14141	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Demeton-O	S21-No14141	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Diazinon	S21-No14141	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dichlorvos	S21-No14141	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dimethoate	S21-No14141	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Disulfoton	S21-No14141	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
EPN	S21-No14141	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethion	S21-No14141	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethoprop	S21-No14141	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethyl parathion	S21-No14141	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenitrothion	S21-No14141	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fensulfothion	S21-No14141	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenthion	S21-No14141	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Malathion	S21-No14141	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Merphos	S21-No14141	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Methyl parathion	S21-No14141	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Mevinphos	S21-No14141	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Monocrotophos	S21-No14141	NCP	mg/kg	< 2	< 2	<1	30%	Pass	

Duplicate									
Organophosphorus Pesticides				Result 1	Result 2	RPD			
Naled	S21-No14141	NCP	ma/ka	< 0.2	< 0.2	<1	30%	Pass	
Omethoate	S21-No14141	NCP	mg/kg mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Phorate	S21-No14141	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pirimiphos-methyl	S21-No14141	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pyrazophos	S21-No14141	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ronnel	S21-No14141	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Terbufos	S21-No14141	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tetrachlorvinphos	S21-No14141	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tokuthion	S21-No14141	NCP	<u> </u>	< 0.2	< 0.2	<1	30%	Pass	
Trichloronate		NCP	mg/kg				30%		
	S21-No14141	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Duplicate				Desult d	Desult 0			1	
Polychlorinated Biphenyls	000 M-0000770	NOD		Result 1	Result 2	RPD	200/	Dese	
Aroclor-1016	S22-My0036776	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1221	S22-My0036776	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	S22-My0036776	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1242	S22-My0036776	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1248	S22-My0036776	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1254	S22-My0036776	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1260	S22-My0036776	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Total PCB*	S22-My0036776	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Duplicate					1			1	
	1			Result 1	Result 2	RPD			
% Moisture	S22-My0040221	NCP	%	14	12	13	30%	Pass	
Duplicate				-	, ,			_	
				Result 1	Result 2	RPD			
pH (1:5 Aqueous extract at 25°C as									
rec.)	S22-My0038064	NCP	pH Units	3.8	3.9	<1	30%	Pass	
Duplicate									
Cation Exchange Capacity				Result 1	Result 2	RPD			
Cation Exchange Capacity	M22-My0037871	NCP	meq/100g	20	26	23	30%	Pass	
Duplicate					1 1				
Phenols (Halogenated)				Result 1	Result 2	RPD			
2-Chlorophenol	S22-My0035429	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2.4-Dichlorophenol	S22-My0035429	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2.4.5-Trichlorophenol	S22-My0035429	NCP	mg/kg	< 1	< 1	<1	30%	Pass	
2.4.6-Trichlorophenol	S22-My0035429	NCP	mg/kg	< 1	< 1	<1	30%	Pass	
2.6-Dichlorophenol	S22-My0035429	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2.6-Dichlorophenol 4-Chloro-3-methylphenol	S22-My0035429	NCP	mg/kg mg/kg	< 0.5 < 1	< 0.5 < 1	<1 <1	30%	Pass	
	S22-My0035429 S22-My0035429	NCP NCP							
4-Chloro-3-methylphenol	S22-My0035429	NCP	mg/kg	< 1	< 1	<1	30%	Pass	
4-Chloro-3-methylphenol Pentachlorophenol	S22-My0035429 S22-My0035429	NCP NCP	mg/kg mg/kg	< 1 < 1	< 1 < 1	<1 <1	30% 30%	Pass Pass	
4-Chloro-3-methylphenol Pentachlorophenol Tetrachlorophenols - Total	S22-My0035429 S22-My0035429	NCP NCP	mg/kg mg/kg	< 1 < 1	< 1 < 1	<1 <1	30% 30%	Pass Pass	
4-Chloro-3-methylphenol Pentachlorophenol Tetrachlorophenols - Total Duplicate	S22-My0035429 S22-My0035429	NCP NCP	mg/kg mg/kg	< 1 < 1 < 10	< 1 < 1 < 10	<1 <1 <1	30% 30%	Pass Pass	
4-Chloro-3-methylphenol Pentachlorophenol Tetrachlorophenols - Total Duplicate Phenols (non-Halogenated)	S22-My0035429 S22-My0035429 S22-My0035429	NCP NCP NCP	mg/kg mg/kg mg/kg	< 1 < 1 < 10 Result 1	< 1 < 1 < 10 Result 2	<1 <1 <1 RPD	30% 30% 30%	Pass Pass Pass	
4-Chloro-3-methylphenol Pentachlorophenol Tetrachlorophenols - Total Duplicate Phenols (non-Halogenated) 2-Cyclohexyl-4.6-dinitrophenol	S22-My0035429 S22-My0035429 S22-My0035429 S22-My0035429	NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg	< 1 < 1 < 10 Result 1 < 20	< 1 < 1 < 10 Result 2 < 20	<1 <1 <1 RPD <1	30% 30% 30% 30%	Pass Pass Pass Pass	
4-Chloro-3-methylphenol Pentachlorophenol Tetrachlorophenols - Total Duplicate Phenols (non-Halogenated) 2-Cyclohexyl-4.6-dinitrophenol 2-Methyl-4.6-dinitrophenol	S22-My0035429 S22-My0035429 S22-My0035429 S22-My0035429 S22-My0035429 S22-My0035429	NCP NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg mg/kg	< 1 < 10 Result 1 < 20 < 5	< 1 < 1 < 10 Result 2 < 20 < 5	<1 <1 <1 RPD <1 <1	30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass	
4-Chloro-3-methylphenol Pentachlorophenol Tetrachlorophenols - Total Duplicate Phenols (non-Halogenated) 2-Cyclohexyl-4.6-dinitrophenol 2-Methyl-4.6-dinitrophenol 2-Nitrophenol	S22-My0035429 S22-My0035429 S22-My0035429 S22-My0035429 S22-My0035429 S22-My0035429 S22-My0035429 S22-My0035429	NCP NCP NCP NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 1 < 10 Result 1 < 20 < 5 < 1 < 0.5	< 1 < 10 Result 2 < 20 < 5 < 1 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
4-Chloro-3-methylphenol Pentachlorophenol Tetrachlorophenols - Total Duplicate Phenols (non-Halogenated) 2-Cyclohexyl-4.6-dinitrophenol 2-Methyl-4.6-dinitrophenol 2-Nitrophenol 2.4-Dimethylphenol 2.4-Dinitrophenol	S22-My0035429 S22-My0035429 S22-My0035429 S22-My0035429 S22-My0035429 S22-My0035429 S22-My0035429 S22-My0035429 S22-My0035429	NCP NCP NCP NCP NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<1 <10 Result 1 < 20 < 5 < 1 < 0.5 < 5	< 1 < 10 Result 2 < 20 < 5 < 1 < 0.5 < 5	<1 <1 RPD <1 <1 <1 <1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
4-Chloro-3-methylphenol Pentachlorophenol Tetrachlorophenols - Total Duplicate Phenols (non-Halogenated) 2-Cyclohexyl-4.6-dinitrophenol 2-Methyl-4.6-dinitrophenol 2.4-Dimethylphenol 2.4-Dimethylphenol 2-Methylphenol (o-Cresol)	S22-My0035429 S22-My0035429 S22-My0035429 S22-My0035429 S22-My0035429 S22-My0035429 S22-My0035429 S22-My0035429 S22-My0035429 S22-My0035429	NCP NCP NCP NCP NCP NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<1 <10 Result 1 < 20 < 5 < 1 < 0.5 < 5 < 0.2	<1 <10 Result 2 < 20 < 5 < 1 < 0.5 < 5 < 5 < 0.2	<1 <1 RPD <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30% 30% 30% 30% 30%	PassPassPassPassPassPassPassPassPassPassPassPassPass	
4-Chloro-3-methylphenol Pentachlorophenol Tetrachlorophenols - Total Duplicate Phenols (non-Halogenated) 2-Cyclohexyl-4.6-dinitrophenol 2-Methyl-4.6-dinitrophenol 2-Nitrophenol 2.4-Dimethylphenol 2.4-Dimitrophenol 2-Methylphenol (o-Cresol) 3&4-Methylphenol (m&p-Cresol)	S22-My0035429 S22-My0035429 S22-My0035429 S22-My0035429 S22-My0035429 S22-My0035429 S22-My0035429 S22-My0035429 S22-My0035429 S22-My0035429 S22-My0035429	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 1 < 10 Result 1 < 20 < 5 < 1 < 0.5 < 5 < 0.2 < 0.4	<1 <10 Result 2 <20 <5 <1 <0.5 <5 <0.2 <0.4	<1 <1 RPD <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
4-Chloro-3-methylphenol Pentachlorophenol Tetrachlorophenols - Total Duplicate Phenols (non-Halogenated) 2-Cyclohexyl-4.6-dinitrophenol 2-Methyl-4.6-dinitrophenol 2-Nitrophenol 2.4-Dimethylphenol 2.4-Dimitrophenol 2-Methylphenol (o-Cresol)	S22-My0035429 S22-My0035429 S22-My0035429 S22-My0035429 S22-My0035429 S22-My0035429 S22-My0035429 S22-My0035429 S22-My0035429 S22-My0035429	NCP NCP NCP NCP NCP NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	<1 <10 Result 1 < 20 < 5 < 1 < 0.5 < 5 < 0.2	<1 <10 Result 2 < 20 < 5 < 1 < 0.5 < 5 < 5 < 0.2	<1 <1 RPD <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30% 30% 30% 30% 30%	PassPassPassPassPassPassPassPassPassPassPassPassPass	

Duplicate				_			_		
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S22-My0038537	CP	mg/kg	3.3	4.6	34	30%	Fail	Q15
Cadmium	S22-My0038537	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S22-My0038537	CP	mg/kg	60	76	24	30%	Pass	
Copper	S22-My0038537	CP	mg/kg	13	15	16	30%	Pass	
Lead	S22-My0038537	CP	mg/kg	6.8	8.1	16	30%	Pass	
Mercury	S22-My0038537	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S22-My0038537	CP	mg/kg	52	62	18	30%	Pass	
Zinc	S22-My0038537	CP	mg/kg	34	47	31	30%	Fail	Q15
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S22-My0038539	CP	mg/kg	2.8	2.7	4.0	30%	Pass	
Cadmium	S22-My0038539	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S22-My0038539	CP	mg/kg	78	74	6.0	30%	Pass	
Copper	S22-My0038539	CP	mg/kg	16	17	1.0	30%	Pass	
Lead	S22-My0038539	CP	mg/kg	7.1	7.1	<1	30%	Pass	
Mercury	S22-My0038539	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S22-My0038539	CP	mg/kg	55	59	6.0	30%	Pass	
Zinc	S22-My0038539	CP	mg/kg	29	29	1.0	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.
N07	Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Q15 The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised by:

Asim Khan	Analytical Services Manager
Charl Du Preez	Senior Analyst-Sample Properties
Dilani Samarakoon	Senior Analyst-Inorganic
Gabriele Cordero	Senior Analyst-Metal
Roopesh Rangarajan	Senior Analyst-Organic
Roopesh Rangarajan	Senior Analyst-Volatile
Sayeed Abu	Senior Analyst-Asbestos
Scott Beddoes	Senior Analyst-Metal

Glenn Jackson General Manager

Final Report – this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Geotesta Pty Ltd (NSW) Unit 6, 20/22 Foundry Road Seven Hills NSW 2147

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention:

Victor Kirpichnikov (GEOTESTA)

Report Project name Project ID Received Date 897298-S ADDITIONAL - LOT 7 DP223428 NARROMINE ROAD ADDITIONAL - NE1295 Jun 14, 2022

Client Sample ID			EBH1	EBH2	EBH6	EBH8
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S22-Jn0030239	S22-Jn0030240	S22-Jn0030241	S22-Jn0030242
Date Sampled			Jun 08, 2022	Jun 08, 2022	Jun 08, 2022	Jun 08, 2022
Test/Reference	LOR	Unit				
Chromium (hexavalent)	1	mg/kg	< 1	< 1	< 1	< 1
% Moisture	1	%	17	21	23	20

Client Sample ID Sample Matrix Eurofins Sample No.				EBH12 Soil S22-Jn0030244
Date Sampled Test/Reference	LOR	Unit	Jun 08, 2022	Jun 08, 2022
	LOIN	Onic		
Chromium (hexavalent)	1	mg/kg	< 1	< 1
% Moisture	1	%	22	19

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Chromium (hexavalent)	Sydney	Jun 14, 2022	28 Days
- Method: In-house method E057.2			
% Moisture	Sydney	Jun 14, 2022	14 Days
- Method: LTM-GEN-7080 Moisture			

	eurofi	nc			Eurofins Environme ABN: 50 005 085 521	nt Te	sting /	Australia Pty Lt	d		Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environmen NZBN: 9429046024954	t Testing NZ Limited
web: w	ww.eurofins.com.au EnviroSales@eurofins	Envi	ronment		Melbourne 6 Monterey Road Dandenong South VIC 3 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254	175 G) P	irrawee	owar Road n NSW 2066 61 2 9900 8400 261 Site # 18217	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 6253 4444 NATA # 2377 Site # 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 767 Phone : 0800 856 450 IANZ # 1290
	mpany Name: Idress:	Geotesta Pty Unit 6, 20/22 Seven Hills NSW 2147	/ Ltd (NSW) Foundry Roa	ad			R(Pl	rder No.: eport #: none: ax:	897298 1300852 216		Received: Due: Priority: Contact Name:	Jun 14, 2022 2:59 Jun 15, 2022 1 Day Victor Kirpichnikov	
	oject Name: oject ID:	ADDITIONAI ADDITIONAI		223428 NARR	OMINE ROAD						Eurofins Analytica	I Services Manager :	Asim Khan
		Sa	mple Detail			Chromium (hexavalent)	Moisture Set						
Melk	ourne Laborato	ory - NATA # 12	61 Site # 125	54									
	ney Laboratory			_		Х	X	-					
	bane Laboratory							-					
	field Laboratory h Laboratory - N							{					
	ernal Laboratory - N		10 # 2010					1					
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID			1					
1	EBH1	Jun 08, 2022		Soil	S22- Jn0030239	х	x]					
2	EBH2	Jun 08, 2022		Soil	S22- Jn0030240	х	x						
3	EBH6	Jun 08, 2022		Soil	S22- Jn0030241	х	х						
4	EBH8	Jun 08, 2022		Soil	S22- Jn0030242	х	х						
	EBH11	Jun 08, 2022		Soil	S22- Jn0030243	х	x						
5	сыптт	Jun 08, 2022			Jn0030243	x	X	4					

🎎 eurofin	seurofins				ustralia Pty Lt		Eurofins ARL Pty Ltd ABN: 91 05 0159 898	NZBN: 9429046024954		
web: www.eurofins.com.au email: EnviroSales@eurofins.co	Environment Testing	Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254		Sydney 179 Magowar Road 5 Girraween NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217		Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 6253 4444 NATA # 2377 Site # 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290
Company Name: Address:	Geotesta Pty Ltd (NSW) Unit 6, 20/22 Foundry Road Seven Hills NSW 2147			Re	der No.: eport #: none: ix:	897298 1300852 216		Received: Due: Priority: Contact Name:	Jun 14, 2022 2:59 Jun 15, 2022 1 Day Victor Kirpichnikov	
Project Name: Project ID:	ADDITIONAL - LOT 7 DP223428 NARI ADDITIONAL - NE1295	ROMINE ROAD						Eurofins Analytica	I Services Manager :	Asim Khan
	Sample Detail		Chromium (hexavalent)	Moisture Set						
	y - NATA # 1261 Site # 1254									
	NATA # 1261 Site # 18217		Х	Х						
· · · · · · · · · · · · · · · · · · ·	- NATA # 1261 Site # 20794									
	NATA # 1261 Site # 25079									
	ATA # 2377 Site # 2370									
External Laboratory										
		Jn0030244								
Test Counts			6	6						

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

onito		
mg/kg: milligrams per kilogram	mg/L: milligrams per litre	µg/L: micrograms per litre
ppm: parts per million	ppb: parts per billion	%: Percentage
org/100 mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100 mL: Most Probable Number of organisms per 100 millilitres

Terms

APHA	American Public Health Association
COC	Chain of Custody
CP	Client Parent - QC was performed on samples pertaining to this report
CRM	Certified Reference Material (ISO17034) - reported as percent recovery.
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
LOR	Limit of Reporting.
LCS	Laboratory Control Sample - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
SRA	Sample Receipt Advice
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
твто	Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.
TCLP	Toxicity Characteristic Leaching Procedure
TEQ	Toxic Equivalency Quotient or Total Equivalence
QSM	US Department of Defense Quality Systems Manual Version 5.4
US EPA	United States Environmental Protection Agency
WA DWER	Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
Chromium (hexavalent)			mg/kg	< 1			1	Pass	
LCS - % Recovery									
Chromium (hexavalent)			%	92			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S22-Jn0030239	CP	%	17	18	1.0	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Chromium (hexavalent)	S22-Jn0030241	CP	mg/kg	< 1	< 1	<1	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Authorised by:

Asim Khan Ryan Phillips Analytical Services Manager Senior Analyst-Inorganic

Glenn Jackson General Manager

Final Report – this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Certificate of Analysis

Environment Testing

Geotesta Pty Ltd (NSW) Unit 6, 20/22 Foundry Road Seven Hills NSW 2147

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025–Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention:	Victor Kirpichnikov (GEOTESTA)
Report	889035-AID
Project Name	LOT 7 DP223428 NARROMINE ROAD
Project ID	NE1295
Received Date	May 13, 2022
Date Reported	Jun 16, 2022
Methodology:	
Asbestos Fibre Identification	Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques. NOTE: Positive Trace Analysis results indicate the sample contains detectable respirable fibres.
Unknown Mineral Fibres	Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as Electron Microscopy, to confirm unequivocal identity. NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the optical properties of these materials, AS4964 requires that these are reported as UMF unless confirmed by an independent technique.
Subsampling Soil Samples	The whole sample submitted is first dried and then passed through a 10mm sieve followed by a 2mm sieve. All fibrous matter greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a sub-sampling routine based on ISO 3082:2009(E) is employed. <i>NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-sampled for trace analysis, in accordance with AS 4964-2004.</i>
Bonded asbestos- containing material (ACM)	The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964 - 2004. NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.
Limit of Reporting	The performance limitation of the AS 4964 (2004) method for non-homogeneous samples is around 0.1 g/kg (equivalent to 0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis, this is considered to be at the nominal reporting limit of 0.01% (w/w). The NEPM screening level of 0.001% (w/w) is intended as an on-site determination, not a laboratory Limit of Reporting (LOR), per se. Examination of a large sample size (e.g. 500 mL) may improve the likelihood of detecting asbestos, particularly AF, to aid assessment against the NEPM criteria. Gravimetric determinations to this level of accuracy are outside of AS 4964 and hence NATA Accreditation does not cover the performance of this service (non-NATA results shown with an asterisk). NOTE: NATA News March 2014, p.7, states in relation to AS 4964: "This is a qualitative method with a nominal reporting limit of 0.01 % " and that currently in Australia "there is no validated method available for the quantification of asbestos". This report is consistent with the analytical procedures and reporting recommendations in the NEPM and the WA DoH.

Project NameLOT 7 DP223428 NARROMINE ROADProject IDNE1295Date SampledMay 12, 2022Report889035-AID

Client Sample ID	Eurofins Sample No.	Date Sampled	Sample Description	Result
EBH1	22-My0038531	May 12, 2022	Approximate Sample 439g Sample consisted of: Red- brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
EBH2	22-My0038532	May 12, 2022	Approximate Sample 382g Sample consisted of: Red- brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
EBH3	22-My0038533	May 12, 2022	Approximate Sample 562g Sample consisted of: Red- brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
EBH4	22-My0038534	May 12, 2022	Approximate Sample 465g Sample consisted of: Red- brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
EBH5	22-My0038535	May 12, 2022	Approximate Sample 400g Sample consisted of: Red- brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
EBH6	22-My0038536	May 12, 2022	Approximate Sample 426g Sample consisted of: Red- brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
EBH7	22-My0038537	May 12, 2022	Approximate Sample 508g Sample consisted of: Red- brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
EBH8	22-My0038538	May 12, 2022	Approximate Sample 563g Sample consisted of: Red- brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.

Client Sample ID	Eurofins Sample No.	Date Sampled	Sample Description	Result
EBH9	22-My0038539	May 12, 2022	Approximate Sample 513g Sample consisted of: Red- brown fine-grained clayey soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
EBH10	22-My0038540	May 12, 2022	Approximate Sample 582g Sample consisted of: Red- brown fine-grained clayey soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
EBH11	22-My0038541	May 12, 2022	Approximate Sample 604g Sample consisted of: Red- brown fine-grained clayey soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
EBH12	22-My0038542	May 12, 2022	Approximate Sample 550g Sample consisted of: Red- brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description

Asbestos - LTM-ASB-8020

Testing SiteExtractedSydneyMay 17, 2022

Holding Time

	eurofi				Eurofins Environmen ABN: 50 005 085 521 Melbourne 6 Monterey Road	S	ydney			Br	isbane		Place		Newcastle	Eurofins ARL Pty Ltd ABN: 91 05 0159 898 Perth 46-48 Banksia Road	Eurofins Environmen NZBN: 9429046024954 Auckland 35 O'Rorke Road	t Testing NZ Limited Christchurch 43 Detroit Drive
					enong South VIC 3175 Girraween NSW 2066 Murarrie QLD 4172 Mayfield East NS e : +61 3 8564 5000 Phone : +61 2 9900 8400 Phone : +61 7 3902 4600 PO Box 60 Wickl A # 1261 Site # 1254 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794 Phone : +61 2 49					N) F 94 F	Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	Welshpool WA 6106 Phone : +61 8 6253 4444 NATA # 2377 Site # 2370	Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Rolleston, Christchurch 767 Phone : 0800 856 450 IANZ # 1290				
Company Name: Geotesta Pty Ltd (NSW) Address: Unit 6, 20/22 Foundry Road Seven Hills NSW 2147							Re Pl	rder N eport none: ax:	#:		8903 3008	5 52 21	6			Received: Due: Priority: Contact Name:	May 13, 2022 4:00 May 20, 2022 5 Day Victor Kirpichnikov	
	oject Name: oject ID:	LOT 7 DP22 NE1295	3428 NARRC	DMINE ROAD												Eurofins Analytica	I Services Manager :	Asim Khan
Sample Detail							pH (1:5 Aqueous extract at 25°C as rec.)	Metals M8	Eurofins Suite B15	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7A	BTEXN and Volatile TRH	BTEXN and Volatile TRH				
Melb	ourne Laborato	ory - NATA # 12	en Site # 125	54		 					Х							
Sydı	ney Laboratory	- NATA # 1261	Site # 18217			Х	X	Х	Х	Х	Х	X	Х	Х	_			
	bane Laborator	•				 									4			
	field Laboratory			J		<u> </u>									4			
	h Laboratory - Nernal Laboratory		te # 2370			<u> </u>									-			
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID										-			
1	EBH1	May 12, 2022		Soil	S22- My0038531	х			х	х		x						
2	EBH2	May 12, 2022		Soil	S22- My0038532	х		_	х	х		x						
3	EBH3	May 12, 2022		Soil	S22- My0038533	х			х	х		х						
4	EBH4	May 12, 2022		Soil	S22- My0038534	х			х	х		х						
5	EBH5	May 12, 2022		Soil	S22- My0038535	х	x		х	х	х	x						
	EBH6	May 12, 2022	1	Soil	S22-	Х		1	X	Х		X			1			

web: v email: Cc	eurofi www.eurofins.com.au EnviroSales@eurofins ompany Name: ddress:	ABN: 50 005 085 521 Melbourne 6 Monterey Road Dandenong South VIC 3 Phone : +61 3 8564 500	Melbourne Sydney Brisbane Neww 6 Monterey Road 179 Magowar Road 1/21 Smallwood Place 4/52 Dandenong South VIC 3175 Girraween NSW 2066 Murarrie QLD 4172 Mayf Phone : +61 3 8564 5000 Phone : +61 7 3902 4600 PO B NATA # 1261 Site # 1254 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794 Phone							172 902 4600 e # 2079	1 0 1 94 1	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	Eurofins ARL Pty Ltd ABN: 91 05 0159 898 Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 6253 4444 NATA # 2377 Site # 2370 Received: Due: Priority: Contact Name:	NZBN: 9429046024954 Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Penrose, Auckland 1061 Rolleston, Christchurch 7675 Phone : +64 9 526 45 51 IANZ # 1290 May 13, 2022 4:00 PM May 20, 2022 5 Day Victor Kirpichnikov (GEOTESTA)				
	oject Name: oject ID:	LOT 7 DP22 NE1295	3428 NARROMINE ROA	D											Eurofins Analytic	l Services Manager : Asim Khan		
	Sample Detail						Metals M8	Eurofins Suite B15	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7A	BTEXN and Volatile TRH	BTEXN and Volatile TRH					
Mel	bourne Laborate	ory - NATA # 12	61 Site # 1254							Х								
Syd	ney Laboratory	- NATA # 1261	Site # 18217		X	X	Х	X	X	Х	X	Х	Х	_				
	bane Laborator	•			-					-				_				
	field Laboratory													-				
	th Laboratory - N		te # 23/0											-				
	ernal Laboratory			My0038536		-				-				-				
7	EBH7	May 12, 2022	Soil	S22- My0038537	x			x	x		x							
8	EBH8	May 12, 2022	Soil	S22- My0038538	x			х	x		х							
9	EBH9	May 12, 2022	Soil	S22- My0038539	x			x	x		x							
10	EBH10	May 12, 2022	Soil	S22- My0038540	x			х	x		x			_				
11	EBH11	May 12, 2022	Soil	S22- My0038541	x			Х	X		X			_				
12	EBH12	May 12, 2022	Soil	S22- My0038542	Х			х	X		Х							

eurofins					Eurofins Environm ABN: 50 005 085 521	ent Te	sting A	ustra	lia Pty	Ltd						Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environment Testing NZ Limited NZBN: 9429046024954			
			Melbourne 6 Monterey Road Dandenong South VIC (Phone : +61 3 8564 500 NATA # 1261 Site # 125	Interey Road 179 Magowar Road Jenong South VIC 3175 Girraween NSW 2066 Ie : +61 3 8564 5000 Phone : +61 2 9900 8400			1/ M D P					Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 6253 4444 NATA # 2377 Site # 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290					
Company Name: Geotesta Pty Ltd (NSW) Address: Unit 6, 20/22 Foundry Road Seven Hills NSW 2147						Order No.: Report #: 889035 Phone: 1300852 216 Fax:						6			Received: Due: Priority: Contact Name:	May 13, 2022 4:00 May 20, 2022 5 Day Victor Kirpichnikov				
	oject Name: oject ID:	LOT 7 DP22 NE1295	3428 NARROMI	NE ROAD												Eurofins Analytic	al Services Manager	l Services Manager : Asim Khan		
Sample Detail						Asbestos - WA guidelines	pH (1:5 Aqueous extract at 25°C as rec.)	Metals M8	Eurofins Suite B15	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7A	BTEXN and Volatile TRH	BTEXN and Volatile TRH						
Mell	oourne Laborat	ory - NATA # 12	61 Site # 1254								Х									
		- NATA # 1261				X	X	Х	X	Х	Х	X	х	Х	4					
		ry - NATA # 126										<u> </u>			4					
		y - NATA # 1261				<u> </u>									4					
		NATA # 2377 Si	te # 2370			<u> </u>									4					
Exte 13	BD1	y May 12, 2022	So	oil	S22- My0038543			x		x					-					
14	EIL	May 12, 2022	So	oil	S22- My0038544			x		x					-					
15	TRIP SPIKE	May 12, 2022	So	oil	S22- My0038545									х						
16	TRIP BLANK	May 12, 2022	So	oil	S22- My0038546								х		-					
Test	t Counts					12	1	2	12	14	1	12	1	1						

Internal Quality Control Review and Glossary General

- 1
- 2 3
- QC data may be available on request. All soil results are reported on a dry basis, unless otherwise stated. Samples were analysed on an 'as received' basis. Information identified on this report with the colour blue indicates data provided by customer that may have an impact on the results. Information identified on this report with the colour orange indicates sections of the report not covered by the laboratory's scope of NATA accreditation. This report replaces any interim results previously issued. 4. 5.
- 6.

Holding Times

Please refer to the most recent version of the 'Sample Preservation and Container Guide' for holding times (QS3001). If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the

date of sampling, therefore compliance to these may be outside the laboratory's control.

Units	
% w/w: F/fld	Percentage weight-for-weight basis, e.g. of asbestos in asbestos-containing finds in soil samples (% w/w) Airborne fibre filter loading as Fibres (N) per Fields counted (n)
F/mL	Airborne fibre reported concentration as Fibres per millilitre of air drawn over the sampler membrane (C)
g, kg	Mass, e.g. of whole sample (M) or asbestos-containing find within the sample (m)
g/kg L, mL	Concentration in grams per kilogram Volume, e.g. of air as measured in AFM (V = r x t)
L/min	Airborne fibre sampling Flowrate as litres per minute of air drawn over the sampler membrane (r)
min	Time (t), e.g. of air sample collection period
Calculations	
Airborne Fibre Concentration:	$C = \left(\frac{A}{a}\right) \times \left(\frac{N}{n}\right) \times \left(\frac{1}{r}\right) \times \left(\frac{1}{t}\right) = K \times \left(\frac{N}{n}\right) \times \left(\frac{1}{V}\right)$
Asbestos Content (as asbestos):	$\% w/w = \frac{(m \times P_A)}{M}$
Weighted Average (of asbestos):	$\mathscr{H}_{WA} = \sum \frac{(m \times P_A)_X}{x}$
Terms	
%asbestos	Estimated percentage of asbestos in a given matrix. May be derived from knowledge or experience of the material, informed by HSG264 Appendix 2, else assumed to be 15% in accordance with WA DOH Appendix 2 (P _A).
ACM	Asbestos Containing Materials. Asbestos contained within a non-asbestos matrix, typically presented in bonded (non-friable) condition. For the purposes of the NEPM and WA DOH, ACM corresponds to material larger than 7 mm x 7 mm.
AF	Asbestos Fines. Asbestos contamination within a soil sample, as defined by WA DOH. Includes loose fibre bundles and small pieces of friable and non-friable material such as asbestos cement fragments mixed with soil. Considered under the NEPM as equivalent to "non-bonded / friable".
AFM	Airborne Fibre Monitoring, e.g. by the MFM.
Amosite	Amosite Asbestos Detected. Amosite may also refer to Fibrous Grunerite or Brown Asbestos. Identified in accordance with AS 4964-2004.
AS	Australian Standard.
Asbestos Content (as asbestos) Total % w/w asbestos content in asbestos-containing finds in a soil sample (% w/w).
Chrysotile	Chrysotile Asbestos Detected. Chrysotile may also refer to Fibrous Serpentine or White Asbestos. Identified in accordance with AS 4964-2004.
COC	Chain of Custody.
Crocidolite	Crocidolite Asbestos Detected. Crocidolite may also refer to Fibrous Riebeckite or Blue Asbestos. Identified in accordance with AS 4964-2004.
Dry	Sample is dried by heating prior to analysis.
DS	Dispersion Staining. Technique required for Unequivocal Identification of asbestos fibres by PLM.
FA	Fibrous Asbestos. Asbestos containing material that is wholly or in part friable, including materials with higher asbestos content with a propensity to become friable with handling, and any material that was previously non-friable and in a severely degraded condition. For the purposes of the NEPM and WA DOH, FA generally corresponds to material larger than 7 mm, although FA may be more difficult to visibly distinguish and may be assessed as AF.
Fibre Count	Total of all fibres (whether asbestos or not) meeting the counting criteria set out in the NOHSC:3003
Fibre ID	Fibre Identification. Unequivocal identification of asbestos fibres according to AS 4964-2004. Includes Chrysotile, Amosite (Grunerite) or Crocidolite asbestos.
Friable	Asbestos-containing materials of any size that may be broken or crumbled by hand pressure. For the purposes of the NEPM, this includes both AF and FA. It is outside of the laboratory's remit to assess degree of friability.
HSG248	UK HSE HSG248, Asbestos: The Analysts Guide, 2nd Edition (2021).
HSG264	UK HSE HSG264, Asbestos: The Survey Guide (2012).
ISO (also ISO/IEC)	International Organization for Standardization / International Electrotechnical Commission.
K Factor	Microscope constant (K) as derived from the effective filter area of the given AFM membrane used for collecting the sample (A) and the projected eyepiece graticule area of the specific microscope used for the analysis (a).
LOR	Limit of Reporting.
MFM (also NOHSC:3003)	Membrane Filter Method. As described by the Australian Government National Occupational Health and Safety Commission, Guidance Note on the Membrane Filter Method for Estimating Airborne Asbestos Fibres, 2nd Edition [NOHSC:3003(2005)].
NEPM (also ASC NEPM)	National Environment Protection (Assessment of Site Contamination) Measure, (2013, as amended).
Organic	Organic Fibres Detected. Organic may refer to Natural or Man-Made Polymeric Fibres. Identified in accordance with AS 4964-2004.
PCM	Phase Contrast Microscopy. As used for Fibre Counting according to the MFM.
PLM	Polarised Light Microscopy. As used for Fibre Identification and Trace Analysis according to AS 4964-2004.
SMF	Synthetic Mineral Fibre Detected. SMF may also refer to Man Made Vitreous Fibres. Identified in accordance with AS 4964-2004.
SRA	Sample Receipt Advice.
Trace Analysis	Analytical procedure used to detect the presence of respirable fibres (particularly asbestos) in a given sample matrix.
UK HSE HSG	United Kingdom, Health and Safety Executive, Health and Safety Guidance, publication.
UMF	Unidentified Mineral Fibre Detected. Fibrous minerals that are detected but have not been unequivocally identified by PLM with DS according the AS 4964-2004. May include (but not limited to) Actinolite, Anthophyllite or Tremolite asbestos.
WA DOH	Reference document for the NEPM. Government of Western Australia, Guidelines for the Assessment, Remediation and Management of Asbestos- Contaminated Sites in Western Australia (updated 2021), including Appendix Four: Laboratory analysis
Weighted Average	Combined average % w/w asbestos content of all asbestos-containing finds in the given aliquot or total soil sample (%wa).

Comments

22-My0038531, 22-My0038532, 22-My0038534, 22-My0038535 and 22-My0038536: Samples received were less than the nominal 500mL as recommended in Section 4.10 of the NEPM Schedule B1 - Guideline on Investigation Levels for Soil and Groundwater.

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Asbestos Counter/Identifier:

Laxman Dias

Senior Analyst-Asbestos

Authorised by:

Sayeed Abu

Senior Analyst-Asbestos

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Geotesta Pty Ltd (NSW) Unit 6, 20/22 Foundry Road Seven Hills NSW 2147

NATA

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention:

- Mohammad Hossein Bazyar

Report Project name Project ID Received Date 888819-W NARROMINE ROAD DUBBO NE1295 May 13, 2022

Client Sample ID			W-1	W-2	W-3
Sample Matrix			Water	Water	Water
			S22-	S22-	S22-
Eurofins Sample No.			My0036962	My0036963	My0036964
Date Sampled			May 12, 2022	May 12, 2022	May 12, 2022
Test/Reference	LOR	Unit			
Total Recoverable Hydrocarbons					
TRH C6-C9	0.02	mg/L	< 0.02	< 0.02	< 0.02
TRH C10-C14	0.05	mg/L	< 0.05	< 0.05	< 0.05
TRH C15-C28	0.1	mg/L	< 0.1	< 0.1	< 0.1
TRH C29-C36	0.1	mg/L	< 0.1	< 0.1	< 0.1
TRH C10-C36 (Total)	0.1	mg/L	< 0.1	< 0.1	< 0.1
Naphthalene ^{N02}	0.01	mg/L	< 0.01	< 0.01	< 0.01
TRH C6-C10	0.02	mg/L	< 0.02	< 0.02	< 0.02
TRH C6-C10 less BTEX (F1) ^{N04}	0.02	mg/L	< 0.02	< 0.02	< 0.02
TRH >C10-C16	0.05	mg/L	< 0.05	< 0.05	< 0.05
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05	< 0.05	< 0.05
TRH >C16-C34	0.1	mg/L	< 0.1	< 0.1	< 0.1
TRH >C34-C40	0.1	mg/L	< 0.1	< 0.1	< 0.1
TRH >C10-C40 (total)*	0.1	mg/L	< 0.1	< 0.1	< 0.1
Organochlorine Pesticides					
Chlordanes - Total	0.002	mg/L	< 0.002	< 0.002	< 0.002
4.4'-DDD	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002
4.4'-DDE	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002
4.4'-DDT	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002
a-HCH	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002
Aldrin	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002
b-HCH	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002
d-HCH	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002
Dieldrin	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002
Endosulfan I	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002
Endosulfan II	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002
Endosulfan sulphate	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002
Endrin	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002
Endrin aldehyde	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002
Endrin ketone	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002
g-HCH (Lindane)	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002
Heptachlor	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002
Heptachlor epoxide	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002
Hexachlorobenzene	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002
Methoxychlor	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002
Toxaphene	0.005	mg/L	< 0.005	< 0.005	< 0.005

Client Sample ID			W-1	W-2	W-3
Sample Matrix			Water	Water	Water
			S22-	S22-	S22-
Eurofins Sample No.			My0036962	My0036963	My0036964
Date Sampled			May 12, 2022	May 12, 2022	May 12, 2022
Test/Reference	LOR	Unit			
Organochlorine Pesticides					
Aldrin and Dieldrin (Total)*	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002
DDT + DDE + DDD (Total)*	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002
Vic EPA IWRG 621 OCP (Total)*	0.002	mg/L	< 0.002	< 0.002	< 0.002
Vic EPA IWRG 621 Other OCP (Total)*	0.002	mg/L	< 0.002	< 0.002	< 0.002
Dibutylchlorendate (surr.)	1	%	60	135	104
Tetrachloro-m-xylene (surr.)	1	%	132	Q09INT	Q09INT
Organophosphorus Pesticides					
Azinphos-methyl	0.002	mg/L	< 0.002	< 0.002	< 0.002
Bolstar	0.002	mg/L	< 0.002	< 0.002	< 0.002
Chlorfenvinphos	0.02	mg/L	< 0.02	< 0.02	< 0.02
Chlorpyrifos	0.002	mg/L	< 0.002	< 0.002	< 0.002
Chlorpyrifos-methyl	0.002	mg/L	< 0.002	< 0.002	< 0.002
Coumaphos	0.02	mg/L	< 0.02	< 0.02	< 0.02
Demeton-S	0.002	mg/L	< 0.002	< 0.002	< 0.002
Demeton-O	0.002	mg/L	< 0.002	< 0.002	< 0.002
Diazinon	0.002	mg/L	< 0.002	< 0.002	< 0.002
Dichlorvos	0.002	mg/L	< 0.002	< 0.002	< 0.002
Dimethoate	0.002	mg/L	< 0.002	< 0.002	< 0.002
Disulfoton	0.002	mg/L	< 0.002	< 0.002	< 0.002
EPN	0.002	mg/L	< 0.002	< 0.002	< 0.002
Ethion	0.002	mg/L	< 0.002	< 0.002	< 0.002
Ethoprop	0.002	mg/L	< 0.002	< 0.002	< 0.002
Ethyl parathion	0.002	mg/L	< 0.002	< 0.002	< 0.002
Fenitrothion	0.002	mg/L	< 0.002	< 0.002	< 0.002
Fensulfothion	0.002	mg/L	< 0.002	< 0.002	< 0.002
Fenthion	0.002	mg/L	< 0.002	< 0.002	< 0.002
Malathion	0.002	mg/L	< 0.002	< 0.002	< 0.002
Merphos	0.002	mg/L	< 0.002	< 0.002	< 0.002
Methyl parathion	0.002	mg/L	< 0.002	< 0.002	< 0.002
Mevinphos	0.002	mg/L	< 0.002	< 0.002	< 0.002
Monocrotophos	0.002	mg/L	< 0.002	< 0.002	< 0.002
Naled	0.002	mg/L	< 0.002	< 0.002	< 0.002
Omethoate	0.02	mg/L	< 0.02	< 0.02	< 0.02
Phorate	0.002	mg/L	< 0.002	< 0.002	< 0.002
Pirimiphos-methyl	0.02	mg/L	< 0.02	< 0.02	< 0.02
Pyrazophos Poppol	0.002	mg/L	< 0.002	< 0.002	< 0.002
Ronnel Terbufos	0.002	mg/L	< 0.002	< 0.002	< 0.002
	0.002	mg/L	< 0.002	< 0.002	< 0.002
Tetrachlorvinphos Tokuthion	0.002	mg/L mg/L	< 0.002	< 0.002	< 0.002
Trichloronate	0.002	mg/L	< 0.002	< 0.002	< 0.002
Triphenylphosphate (surr.)	1	%	< 0.002 143	< 0.002 Q09INT	< 0.002 Q09INT
		/0	143		
Biochemical Oxygen Demand (BOD-5 Day)	E	mg/L	5.6	- F	- 5
Conductivity (at 25°C)	<u> </u>	uS/cm	5.6	< 5 63	< 5 89
Dissolved Oxygen			9.2	8.6	9.2
	0.01	mg/L %	9.2	95	9.2
Dissolved Oxygen (% Saturation) Nitrate & Nitrite (as N)	0.05		0.19	0.20	0.12
pH (at 25 °C)	0.05	mg/L pH Units		6.9	7.2

Client Sample ID Sample Matrix Eurofins Sample No.			W-1 Water S22- My0036962	W-2 Water S22- My0036963	W-3 Water S22- My0036964
Date Sampled			May 12, 2022	May 12, 2022	May 12, 2022
Test/Reference	LOR	Unit			
Phosphate total (as P)	0.01	mg/L	0.39	< 0.01	0.31
Salinity (determined from EC)*	0.1	mg/L	39	35	46
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	0.4	0.3	0.4
Total Nitrogen (as N)*	0.2	mg/L	0.59	0.5	0.52
Turbidity	1	NTU	92	60	110
Heavy Metals					
Arsenic	0.001	mg/L	< 0.001	< 0.001	< 0.001
Cadmium	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002
Chromium	0.001	mg/L	0.010	0.007	0.013
Copper	0.001	mg/L	0.005	0.004	0.007
Lead	0.001	mg/L	0.002	0.001	0.003
Mercury	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001
Nickel	0.001	mg/L	0.011	0.007	0.015
Zinc	0.005	mg/L	0.015	0.015	0.020
Pathogens					
E.coli (MPN)	1	MPN/100mL	see attached	see attached	see attached
Thermotolerant Coliforms (MPN)	1	MPN/100mL	see attached	see attached	see attached

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	May 20, 2022	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	May 19, 2022	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	May 20, 2022	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Organochlorine Pesticides	Sydney	May 20, 2022	7 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Organophosphorus Pesticides	Sydney	May 20, 2022	7 Days
- Method: LTM-ORG-2200 Organophosphorus Pesticides by GC-MS			
Biochemical Oxygen Demand (BOD-5 Day)	Melbourne	May 17, 2022	2 Days
- Method: LTM-INO-4010 Biochemical Oxygen Demand (BOD5) in Water			
Conductivity (at 25°C)	Sydney	May 19, 2022	28 Days
- Method: LTM-INO-4030 Conductivity			
Dissolved Oxygen	Melbourne	May 18, 2022	28 Days
- Method: APHA 4500-O B, C, G using Dissolved Oxygen analyser			
Dissolved Oxygen (% Saturation)	Melbourne	May 18, 2022	1 Days
- Method: APHA 4500-O B, C, G using Dissolved Oxygen analyser			
pH (at 25 °C)	Sydney	May 19, 2022	0 Hour
- Method: LTM-GEN-7090 pH in water by ISE			
Salinity (determined from EC)*	Sydney	May 19, 2022	0 Days
- Method: LTM-INO-4030			
Turbidity	Sydney	May 19, 2022	2 Days
- Method: LTM-INO-4140 Turbidity by Nephelometric Method			
Metals M8	Sydney	May 19, 2022	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Thermotolerant Coliforms (MPN)	WaterTestingVic	May 16, 2022	24 Hours
- Method: subcontracted to Eurofins Food Testing			
Total Nitrogen Set (as N)			
Nitrate & Nitrite (as N)	Melbourne	May 17, 2022	28 Days
- Method: LTM-INO-4120 Analysis of NOx NO2 NH3 by FIA			
Total Kjeldahl Nitrogen (as N)	Melbourne	May 17, 2022	28 Days
- Method: APHA 4500-Norg B,D Total Kjeldahl Nitrogen by FIA			
Eurofins Suite B19A: Total N (TKN, NOx), Total P			
Phosphate total (as P)	Sydney	May 19, 2022	28 Days
- Method: E052 Total Phosphate (as P)			

🔅 eurofin				Eurofins Environme ABN: 50 005 085 521	ent Te	sting /	Austra	lia Pty	Ltd									Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environmen NZBN: 9429046024954	t Testing NZ Limited		
web: www.eurofins.com.au email: EnviroSales@eurofins.co	www.eurofins.com.au		Testing	6 Monterey Road 179 Magowar Road Dandenong South VIC 3175 Girraween NSW 2066 Phone : +61 3 8564 5000 Phone : +61 2 9900 8400		1/ M D Pł	1/21 Smallwood Place 4/52 Murarrie QLD 4172 Mayfi Phone : +61 7 3902 4600 PO B NATA # 1261 Site # 20794 Phon			Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079			4 1 V 13 F 13 N	2erth 16-48 Banksia Road Welshpool WA 6106 Phone : +61 8 6253 4444 NATA # 2377 Site # 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290						
Company Name: Address:	Geotesta Pty Unit 6, 20/22 Seven Hills NSW 2147	Ltd (NSW) Foundry Roac	1			R	rder N eport hone: ax:	#:		38881 3008	9 52 21	6						Received: Due: Priority: Contact Name:	May 13, 2022 3:00 May 20, 2022 5 Day - Mohammad Hoss			
Project Name: Project ID:	NARROMINE NE1295	E ROAD DUBE	30															Eurofins Analytica	I Services Manager :	ervices Manager : Asim Khan		
	Sar	nple Detail			Biochemical Oxygen Demand (BOD-5 Day)	Conductivity (at 25°C)	Dissolved Oxygen	Dissolved Oxygen (% Saturation)	E.coli (MPN)	pH (at 25 °C)	Salinity (determined from EC)*	Thermotolerant Coliforms (MPN)	Turbidity	Metals M8	Suite B14: OCP/OPP	Total Recoverable Hydrocarbons	Eurofins Suite B19A: Total N (TKN, NOx), Total P					
Melbourne Laborator	y - NATA # 126	61 Site # 1254			Х		Х	х								Х	Х					
Sydney Laboratory -					L	X	 			Х	X		Х	X	х	Х	Х	4				
Brisbane Laboratory																		4				
Mayfield Laboratory -							-											4				
Perth Laboratory - NA	ATA # 2377 Site	e # 2370																4				
External Laboratory									Х			Х						4				
	Sample Date	Sampling Time	Matrix	LAB ID																		
	May 12, 2022	,	Water	S22- My0036962	x	x	х	х	х	х	x	х	Х	x	х	х	Х					
	May 12, 2022	,	Water	S22- My0036963	x	x	x	x	х	х	x	х	Х	x	х	х	х					
3 W-3 M	May 12, 2022	,	Water	S22- My0036964	x	x	х	x	х	х	x	х	х	x	х	х	х					
Test Counts					3	3	3	3	3	3	3	3	3	3	3	3	3					

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

onito		
mg/kg: milligrams per kilogram	mg/L: milligrams per litre	µg/L: micrograms per litre
ppm: parts per million	ppb: parts per billion	%: Percentage
org/100 mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100 mL: Most Probable Number of organisms per 100 millilitres

Terms

APHA	American Public Health Association
COC	Chain of Custody
CP	Client Parent - QC was performed on samples pertaining to this report
CRM	Certified Reference Material (ISO17034) - reported as percent recovery.
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
LOR	Limit of Reporting.
LCS	Laboratory Control Sample - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
SRA	Sample Receipt Advice
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
твто	Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.
TCLP	Toxicity Characteristic Leaching Procedure
TEQ	Toxic Equivalency Quotient or Total Equivalence
QSM	US Department of Defense Quality Systems Manual Version 5.4
US EPA	United States Environmental Protection Agency
WA DWER	Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank	· · ·	• •	· · ·		
Total Recoverable Hydrocarbons					
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
Naphthalene	mg/L	< 0.01	0.01	Pass	
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
TRH >C10-C16	mg/L	< 0.05	0.05	Pass	
TRH >C16-C34	mg/L	< 0.1	0.1	Pass	
TRH >C34-C40	mg/L	< 0.1	0.1	Pass	
Method Blank					
Organochlorine Pesticides					
Chlordanes - Total	mg/L	< 0.002	0.002	Pass	
4.4'-DDD	mg/L	< 0.0002	0.0002	Pass	
4.4'-DDE	mg/L	< 0.0002	0.0002	Pass	
4.4'-DDT	mg/L	< 0.0002	0.0002	Pass	
a-HCH	mg/L	< 0.0002	0.0002	Pass	
Aldrin	mg/L	< 0.0002	0.0002	Pass	
b-HCH	mg/L	< 0.0002	0.0002	Pass	
d-HCH	mg/L	< 0.0002	0.0002	Pass	
Dieldrin	mg/L	< 0.0002	0.0002	Pass	
Endosulfan I	mg/L	< 0.0002	0.0002	Pass	
Endosulfan II	mg/L	< 0.0002	0.0002	Pass	
Endosulfan sulphate	mg/L	< 0.0002	0.0002	Pass	
Endrin	mg/L	< 0.0002	0.0002	Pass	
Endrin aldehyde	mg/L	< 0.0002	0.0002	Pass	
Endrin ketone	mg/L	< 0.0002	0.0002	Pass	
g-HCH (Lindane)	mg/L	< 0.0002	0.0002	Pass	
Heptachlor	mg/L	< 0.0002	0.0002	Pass	
Heptachlor epoxide	mg/L	< 0.0002	0.0002	Pass	
Hexachlorobenzene	mg/L	< 0.0002	0.0002	Pass	
Methoxychlor	mg/L	< 0.0002	0.0002	Pass	
Toxaphene	mg/L	< 0.005	0.005	Pass	
Method Blank	ing/L	0.000	0.000	1 400	
Organophosphorus Pesticides					
Azinphos-methyl	mg/L	< 0.002	0.002	Pass	
Bolstar	mg/L	< 0.002	0.002	Pass	
Chlorfenvinphos	mg/L	< 0.02	0.02	Pass	
Chlorpyrifos	mg/L	< 0.002	0.002	Pass	
Chlorpyrifos-methyl	mg/L	< 0.002	0.002	Pass	
Coumaphos	mg/L	< 0.02	0.02	Pass	
Demeton-S	mg/L	< 0.002	0.002	Pass	
Demeton-O	mg/L	< 0.002	0.002	Pass	
Diazinon	mg/L	< 0.002	0.002	Pass	
Dichlorvos	mg/L	< 0.002	0.002	Pass	
Dimethoate	mg/L	< 0.002	0.002	Pass	
Disulfoton	mg/L	< 0.002	0.002	Pass	
EPN	mg/L	< 0.002	0.002	Pass	
Ethion	mg/L	< 0.002	0.002	Pass	
Ethoprop	mg/L	< 0.002	0.002	Pass	
Ethyl parathion	mg/L	< 0.002	0.002	Pass	

Test	Units	Result 1	Acceptance Limits	e Pass Limits	Qualifying Code
Fenitrothion	mg/L	< 0.002	0.002	Pass	
Fensulfothion	mg/L	< 0.002	0.002	Pass	
Fenthion	mg/L	< 0.002	0.002	Pass	
Malathion	mg/L	< 0.002	0.002	Pass	
Merphos	mg/L	< 0.002	0.002	Pass	
Methyl parathion	mg/L	< 0.002	0.002	Pass	
Mevinphos	mg/L	< 0.002	0.002	Pass	
Monocrotophos	mg/L	< 0.002	0.002	Pass	
Naled	mg/L	< 0.002	0.002	Pass	
Omethoate	mg/L	< 0.02	0.02	Pass	
Phorate	mg/L	< 0.002	0.002	Pass	
Pirimiphos-methyl	mg/L	< 0.02	0.02	Pass	
Pyrazophos	mg/L	< 0.002	0.002	Pass	
Ronnel	mg/L	< 0.002	0.002	Pass	
Terbufos	mg/L	< 0.002	0.002	Pass	
Tetrachlorvinphos	mg/L	< 0.002	0.002	Pass	
Tokuthion	mg/L	< 0.002	0.002	Pass	
		< 0.002	0.002		
Trichloronate Method Blank	mg/L	< 0.002	0.002	Pass	
				Dees	
Biochemical Oxygen Demand (BOD-5 Day)	mg/L	< 5	5	Pass	
Conductivity (at 25°C)	uS/cm	< 10	10	Pass	
Dissolved Oxygen (% Saturation)	%	110		N/A	
Nitrate & Nitrite (as N)	mg/L	< 0.05	0.05	Pass	
Phosphate total (as P)	mg/L	< 0.01	0.01	Pass	
Total Kjeldahl Nitrogen (as N)	mg/L	< 0.2	0.2	Pass	
Turbidity	NTU	< 1	1	Pass	
Method Blank		I I		-	
Heavy Metals					
Arsenic	mg/L	< 0.001	0.001	Pass	
Cadmium	mg/L	< 0.0002	0.0002	Pass	
Chromium	mg/L	< 0.001	0.001	Pass	
Copper	mg/L	< 0.001	0.001	Pass	
Lead	mg/L	< 0.001	0.001	Pass	
Mercury	mg/L	< 0.0001	0.0001	Pass	
Nickel	mg/L	< 0.001	0.001	Pass	
Zinc	mg/L	< 0.005	0.005	Pass	
LCS - % Recovery		•	· ·	·	
Total Recoverable Hydrocarbons					
		85	70-130	Pass	
TRH C6-C9	%	00			
TRH C6-C9 TRH C10-C14	%				
TRH C10-C14	%	105	70-130	Pass	
TRH C10-C14 Naphthalene	%	105 105	70-130 70-130	Pass Pass	
TRH C10-C14 Naphthalene TRH C6-C10	% % %	105 105 86	70-130 70-130 70-130	Pass Pass Pass	
TRH C10-C14 Naphthalene TRH C6-C10 TRH >C10-C16	%	105 105	70-130 70-130	Pass Pass	
TRH C10-C14 Naphthalene TRH C6-C10 TRH >C10-C16 LCS - % Recovery	% % %	105 105 86	70-130 70-130 70-130	Pass Pass Pass	
TRH C10-C14 Naphthalene TRH C6-C10 TRH >C10-C16 LCS - % Recovery Organochlorine Pesticides	% % %	105 105 86 106	70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass	
TRH C10-C14 Naphthalene TRH C6-C10 TRH >C10-C16 LCS - % Recovery Organochlorine Pesticides 4.4'-DDT	% % % %	105 105 86 106 125	70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass	
TRH C10-C14 Naphthalene TRH C6-C10 TRH >C10-C16 LCS - % Recovery Organochlorine Pesticides 4.4'-DDT Endrin	% % % % % % % % %	105 105 86 106 125 118	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass	
TRH C10-C14 Naphthalene TRH C6-C10 TRH >C10-C16 LCS - % Recovery Organochlorine Pesticides 4.4'-DDT Endrin Endrin ketone	% % % %	105 105 86 106 125	70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass	
TRH C10-C14 Naphthalene TRH C6-C10 TRH >C10-C16 LCS - % Recovery Organochlorine Pesticides 4.4'-DDT Endrin Endrin ketone LCS - % Recovery	% % % % % % % % %	105 105 86 106 125 118	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass	
TRH C10-C14 Naphthalene TRH C6-C10 TRH >C10-C16 LCS - % Recovery Organochlorine Pesticides 4.4'-DDT Endrin Endrin ketone LCS - % Recovery Organophosphorus Pesticides	% % % % % % % % % % %	105 105 86 106 125 118 130	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
TRH C10-C14 Naphthalene TRH C6-C10 TRH >C10-C16 LCS - % Recovery Organochlorine Pesticides 4.4'-DDT Endrin Endrin ketone LCS - % Recovery Organophosphorus Pesticides Dimethoate	% % % % % % % % % % % % % % %	105 105 86 106 125 118 130 103	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
TRH C10-C14 Naphthalene TRH C6-C10 TRH >C10-C16 LCS - % Recovery Organochlorine Pesticides 4.4'-DDT Endrin Endrin ketone LCS - % Recovery Organophosphorus Pesticides	% % % % % % % % % % %	105 105 86 106 125 118 130	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Biochemical Oxygen Demand (BOD	-5 Day)		%	115			85-115	Pass	
Conductivity (at 25°C)			%	97			70-130	Pass	
Nitrate & Nitrite (as N)			%	91			70-130	Pass	
Phosphate total (as P)			%	96			70-130	Pass	
Total Kjeldahl Nitrogen (as N)			%	86			70-130	Pass	
Turbidity			%	85			70-130	Pass	
LCS - % Recovery									
Heavy Metals									
Arsenic			%	80			80-120	Pass	
Cadmium			%	106			80-120	Pass	
Chromium			%	83			80-120	Pass	
Copper			%	86			80-120	Pass	
Lead			%	84			80-120	Pass	
Mercury			%	114			80-120	Pass	
Nickel			%	84			80-120	Pass	
Zinc			%	86			80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery				-				-	
Total Recoverable Hydrocarbons				Result 1					
TRH C10-C14	N22-My0044665	NCP	%	116			70-130	Pass	
TRH >C10-C16	N22-My0044665	NCP	%	113			70-130	Pass	
Spike - % Recovery								-	
				Result 1					
Phosphate total (as P)	S22-My0038597	NCP	%	71			70-130	Pass	
Total Kjeldahl Nitrogen (as N)	M22-My0040271	NCP	%	70			70-130	Pass	
Spike - % Recovery									
Heavy Metals				Result 1					
Arsenic	S22-My0042499	NCP	%	86			75-125	Pass	
Cadmium	S22-My0042499	NCP	%	87			75-125	Pass	
Chromium	S22-My0042499	NCP	%	90			75-125	Pass	
Copper	S22-My0042499	NCP	%	91			75-125	Pass	
Lead	S22-My0042499	NCP	%	85			75-125	Pass	
Mercury	S22-My0042499	NCP	%	118			75-125	Pass	
Nickel	S22-My0042499	NCP	%	90			75-125	Pass	
Zinc	S22-My0042499	NCP	%	95			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD			
TRH C10-C14	S22-My0047305	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH C15-C28	S22-My0047305	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH C29-C36	S22-My0047305	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH >C10-C16	S22-My0047305	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH >C16-C34	S22-My0047305	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH >C34-C40	S22-My0047305	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	N22-My0044656	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
4.4'-DDD	N22-My0044656	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
4.4'-DDE	N22-My0044656	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
4.4'-DDT	N22-My0044656	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
4.4-001				1					
a-HCH	N22-My0044656	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
	N22-My0044656 N22-My0044656	NCP NCP	mg/L mg/L	< 0.0002 < 0.0002	< 0.0002 < 0.0002	<u><1</u> <1	30% 30%	Pass Pass	

Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
d-HCH	N22-My0044656	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Dieldrin	N22-My0044656	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endosulfan I	N22-My0044656	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endosulfan II	N22-My0044656	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endosulfan sulphate	N22-My0044656	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endrin	N22-My0044656	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endrin aldehyde	N22-My0044656	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Endrin ketone	N22-My0044656	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
g-HCH (Lindane)	N22-My0044656	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Heptachlor	N22-My0044656	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Heptachlor epoxide	N22-My0044656	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Hexachlorobenzene	N22-My0044656	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Methoxychlor	N22-My0044656	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Toxaphene	N22-My0044656	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Duplicate	1122 My0044000		iiig/E	< 0.000	< 0.000		0070	1 400	
Organophosphorus Pesticides				Result 1	Result 2	RPD			
Azinphos-methyl	N22-My0044656	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Bolstar	N22-My0044656	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Chlorfenvinphos	N22-My0044656	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Chlorpyrifos	N22-My0044656	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Chlorpyrifos-methyl	N22-My0044656	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Coumaphos	N22-My0044656	NCP	mg/L	< 0.02	< 0.002	<1	30%	Pass	
Demeton-S	N22-My0044656	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Demeton-O	N22-My0044656	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Diazinon	N22-My0044656	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Dichlorvos	N22-My0044656	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Dimethoate	N22-My0044656	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Disulfoton	N22-My0044656	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
EPN	N22-My0044656	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Ethion	N22-My0044656	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Ethoprop	N22-My0044656	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Ethyl parathion	N22-My0044656	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Fenitrothion	N22-My0044656	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Fensulfothion	N22-My0044656	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Fenthion	N22-My0044656	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Malathion	N22-My0044656	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Merphos	N22-My0044656	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Methyl parathion	N22-My0044656	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Mevinphos	N22-My0044656	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Monocrotophos	N22-My0044656	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Naled	N22-My0044656	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Omethoate	N22-My0044656	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Phorate	N22-My0044656	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Pirimiphos-methyl	N22-My0044656	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Pyrazophos	N22-My0044656	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Ronnel	N22-My0044656	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Terbufos	N22-My0044656	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Tetrachlorvinphos	N22-My0044656	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Tokuthion	N22-My0044656	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
	N22-My0044656	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	

Duplicate				_					
				Result 1	Result 2	RPD			
Conductivity (at 25°C)	S22-My0049239	NCP	uS/cm	320	320	<1	30%	Pass	
Dissolved Oxygen	R22-My0027658	NCP	mg/L	9.0	8.8	2.0	30%	Pass	
Dissolved Oxygen (% Saturation)	S22-My0036962	CP	%	100	100	3.0	30%	Pass	
Nitrate & Nitrite (as N)	M22-My0047157	NCP	mg/L	11	11	63	30%	Fail	Q15
Phosphate total (as P)	S22-My0039327	NCP	mg/L	0.06	0.05	19	30%	Pass	
Total Kjeldahl Nitrogen (as N)	M22-My0035850	NCP	mg/L	1.1	0.4	14	30%	Pass	
Turbidity	S22-My0054803	NCP	NTU	3.3	3.4	4.0	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S22-My0042498	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Cadmium	S22-My0042498	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium	S22-My0042498	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Copper	S22-My0042498	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Lead	S22-My0042498	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Mercury	S22-My0042498	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel	S22-My0042498	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Zinc	S22-My0042498	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Biochemical Oxygen Demand (BOD-5 Day)	S22-My0036964	СР	mg/L	< 5	< 5	<1	30%	Pass	

Comments

E.coli and Thermotolerant Coliforms analysed by: Eurofins Food Testing Australia Pty Ltd, NATA Accreditation number: 20293, report reference AR-22-NV-006265-01.

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.
Q09	The Surrogate recovery is outside of the recommended acceptance criteria due to matrix interference. Acceptance criteria were met for all other QC
Q15	The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised by:

Robert Biviano	Analytical Services Manager
Caitlin Breeze	Senior Analyst-Inorganic
Charl Du Preez	Senior Analyst-Metal
Dilani Samarakoon	Senior Analyst-Inorganic
Roopesh Rangarajan	Senior Analyst-Organic
Roopesh Rangarajan	Senior Analyst-Volatile
Ryan Phillips	Senior Analyst-Inorganic
Scott Beddoes	Senior Analyst-Inorganic

Glenn Jackson General Manager

Final Report – this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service
- Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.